Experimental Studies, Response Surface Methodology and Molecular Modeling for Optimization and Mechanism Analysis of Methylene Blue Dye Removal by Different Clays

نویسندگان

  • B. Abedi-Orang Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
  • K. Seifpanahi Shabani Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده مقاله:

In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism are performed using the response surface methodology, molecular modeling, and experimental studies. The response surface optimization results demonstrate that the parameters affecting on the dye adsorption process are somewhat similar in all the three types of clays, and any difference in the impacts of the different parameters involved depends on the different structures of these three types of clays. The results of the experimental studies show that all the three clays follow the Temkin isotherm, and the comparison of the clay adsorption capacity is illite (3.28) > kaolinite (4.15) > montmorillonite (4.5) L/g. On the other hand, the results obtained from the laboratory studies and the response surface optimization were obtained using molecular modeling with the Gaussian and Chem-Office softwares. The results of these achievements confirm that the number of acceptor hydrogen bonds around the clays influence the adsorption capacity of methylene blue. Based on the results obtained, most adsorption capacities of clays are related to illite > kaolinite > montmorillonite that have 24, 18, and 16 acceptor hydrogens, respectively. The assessment of the adsorption mechanism process by the different methods confirms the dominance of the physical adsorption process and a minor effect of the chemical adsorption.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Removal of methylene blue from aqueous solution using nano-TiO2/UV process: Optimization by response surface methodology

This work describes the photocatalytic removal of methylene blue from aqueous solution by titanium dioxide nanoparticles under ultraviolet irradiation in a batch system. The effect of operational parameters such as irradiation time, nano titanium dioxide dosage, pH and initial methylene blue concentration were analyzed and optimized by response surface methodology in the nano titanium dioxide/u...

متن کامل

Optimization of removal of methylene blue by Platanus tree leaves using response surface methodology.

Platanus tree leaves were successfully used as a novel sorbent for removing of methylene blue (MB) dye from aqueous solutions. A 2(3) full factorial design was performed for screening of the main factors. The pH, initial concentration of dye (C(d)) and amount of sorbent (m) were considered to be the three main factors at two different levels. It was found that all these factors and their intera...

متن کامل

Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...

متن کامل

Experimental design and response surface modeling for optimization of humic substances removal by activated carbon: A kinetic and isotherm study

The presence of humic acid (HA) in water treatment processes is very harmful and the cause of undesirable color, taste, and smell. Drinking water containing high concentrations of humic substances can be the cause of many health problems. Therefore, the removal of these compounds from water resources is a very important topic. In this research, response surface methodology (RSM) has been used t...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 11  شماره 4

صفحات  1079- 1093

تاریخ انتشار 2020-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023