Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage
نویسندگان
چکیده مقاله:
The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nanoparticles were dispersed in PCM by an ultrasound mechanism with volume fractions of 0.5, 1 and 2%. Transient thermal behavior of the evaporator, energy storage materials and condenser were studied during the charging process with heating powers of 13, 18 and 23W. The performance of system with Tricosane and nanoparticles improved for 1% concentration and reduced for 2% concentration; which concludes for the optimized doping of nanoparticles. In addition, CFD simulation of heat pipe is carried out for the above mentioned opertating conditions. The experimental and simulation results were compared at various operating conditions to establish correlation between them. The numerical results observed to match closely with experimental results. Finally, the thermal performance of heat pipe-PCM module is predicted through CFD simulation for the filling volumes of 115 cc and 130 cc at 13 W, 18 W and 23 W.
منابع مشابه
Experimental Investigations on the Thermal Performance of a Vertical Closed Loop Pulsating Heat Pipe Using Binary Mixture of Fluids
This paper presents the experimental investigations conducted on a vertical closed loop pulsating heat pipe (VCLPHP) to evaluate the thermal performance. The values of thermal resistance and heat transfer coefficient obtained in the experimentation is used as evaluation parameters. The VCLPHP used has capillary tubes having an inner diameter of 2mm and outside diameter 3mm and bent into 5 turns...
متن کاملEnergy Conservation Potential of the Heat Pipe Heat Exchangers: Experimental Study and Predictions
The energy conservation potential of the heat pipe based heat exchangers (HPHXs) was studied in this research. To this end, a typical climate chamber as the representative of an air conditioning system was established. The performance characteristic of a typical eight-row HPHX was obtained based on the one week operation (168 h) to determine the performance characteristic curves. The coil face ...
متن کاملNumerical Analysis of Thermal Performance of Flat Heat Pipe
Three dimensional numerical investigation is carried out to study the influence of geometry on thermal behavior of flat heat pipe. Two phase mixture model has been formulated to investigate the phase change phenomena during steady state operation of flat heat pipe. In this model, single fluid approach is used and governing equations for mass, momentum and energy are discretised using finite vol...
متن کاملNumerical Evaluation on a Direct-contact Thermal Energy Storage System
Weilong Wang, Shiquan He,Jing Ding, Hailong Li, Jinyue Yan, Jianping Yang School of Engineering, Sun Yat-sen University, Guangzhou, China Academy of Building Energy Efficiency of Guangzhou University, Guangzhou, China School of Business, Society and Energy, Mälardalen University, Västerås, Sweden d School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
متن کاملNumerical Simulation of a Porous Latent Heat Thermal Energy Storage for Thermoelectric Cooling
Porous latent heat thermal energy storage for thermoelectric cooling is simulated via a matrix-based enthalpy formulation, having the temperature as unknown, in a three-dimensional domain. The system is made up of two aluminum containers; the inner one contains the cooling objective in water suspension and the outer one the phase change material (PCM) in a porous aluminum matrix. The system’s c...
متن کاملExperimental Study on Specific Heat of Concrete at High Temperatures and Its Influence on Thermal Energy Storage
Using concrete as a thermal energy storage (TES) material is a promising option for large-scale solar-thermal resource development and utilization. Specific heat is one of the most important characteristics for TES performance. In this paper, the half-open dynamic method based on the mixing principle is proposed and applied to measure concrete-specific heat at temperatures up to 600 ◦C. Measure...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 31 شماره 6
صفحات 980- 985
تاریخ انتشار 2018-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023