Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

نویسنده

  • N. NYAMORADI Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran.
چکیده مقاله:

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime prime }(0)=0, hspace{1cm} u^{prime prime }(1)- alpha u^{prime prime }(eta)=0, & end{array} right. end{eqnarray*} where $beta > 0, 0< eta 0$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

in this work, by employing the krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, &amp; u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime...

متن کامل

existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

in this work, by employing the krasnosel&apos;skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prim...

متن کامل

Positive Solutions for Fourth-Order Three-Point Boundary-Value Problems

In this paper, we study sufficient conditions for the existence of at least three positive solutions for fourth-order three-point BVP.

متن کامل

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

As is pointed out in [1, 2], boundary value problems for secondand higher-order differential equations play a very important role in both theory and applications. Recently, an increasing interest in studying the existence of solutions and positive solutions to boundary value problems for fourth-order differential equations is observed; see, for example, [3–8]. In this paper, we are concerned wi...

متن کامل

Positive solutions of nonlinear fourth order boundary value problems with local and nonlocal boundary conditions

We establish new existence results for multiple positive solutions of fourth order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many nonlocal boundary conditions, with a unified approach. Our method is to show that each boundary value problem can be written as the same type of pert...

متن کامل

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-LAPLACIAN BOUNDARY-VALUE PROBLEMS

In this paper, we study the three-point boundary-value problem for a fourth-order one-dimensional p-Laplacian differential equation ` φp(u ′′(t)) ́′′ + a(t)f ` u(t) ́ = 0, t ∈ (0, 1), subject to the nonlinear boundary conditions: u(0) = ξu(1), u′(1) = ηu′(0), (φp(u ′′(0))′ = α1(φp(u ′′(δ))′, u′′(1) = p−1 p β1u ′′(δ), where φp(s) = |s|p−2s, p > 1. Using the five functional fixed point theorem due...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 1

صفحات  -

تاریخ انتشار 2012-02-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023