Estimation of Count Data using Bivariate Negative Binomial Regression Models
نویسندگان
چکیده مقاله:
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression model (NBR-P), which has an additional parameter and the ability to nest both NBR-1 and NBR-2. This paper introduces several forms of bivariate negative binomial regression model (BNBR) which can be fitted to bivariate count data with covariates. The main advantages of having several forms of BNBR are that they are nested and allow likelihood ratio test to be performed for choosing the best model, they have flexible forms of mean-variance relationship, they can be fitted to bivariate count data with positive, zero or negative correlations, and they allow overdispersion of the two dependent variables. Applications of several forms of BNBR are illustrated on two sets of count data; Australian health care and Malaysian motor insurance.
منابع مشابه
Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملGeneralized bivariate count data regression models
This paper proposes a flexible bivariate count data regression model that nests the bivariate negative binomial regression. An application to the demand for health services is given. 2000 Elsevier Science S.A. All rights reserved.
متن کاملNegative Binomial Regression Models and Estimation Methods
The Poisson-Gamma model has properties that are very similar to the Poisson model discussed in Appendix C, in which the dependent variable i y is modeled as a Poisson variable with a mean i where the model error is assumed to follow a Gamma distribution. As it names implies, the Poisson-Gamma is a mixture of two distributions and was first derived by Greenwood and Yule (1920). This mixture di...
متن کاملOn the bivariate negative binomial regression model
In this paper, a new bivariate negative binomial regression (BNBR) model allowing any type of correlation is defined and studied. The marginal means of the bivariate model are functions of the explanatory variables. The parameters of the bivariate regression model are estimated by using the maximum likelihood method. Some test statistics including goodness-of-fit are discussed. Two numerical da...
متن کاملEstimation of adjusted rate differences using additive negative binomial regression.
Rate differences are an important effect measure in biostatistics and provide an alternative perspective to rate ratios. When the data are event counts observed during an exposure period, adjusted rate differences may be estimated using an identity-link Poisson generalised linear model, also known as additive Poisson regression. A problem with this approach is that the assumption of equality of...
متن کاملEstimating Spatial and Temporal Components of Variation for Fisheries Count Data Using Negative Binomial Mixed Models
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics ar...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 2
صفحات 143- 166
تاریخ انتشار 2017-08-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023