Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates
نویسنده
چکیده مقاله:
Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma powers of 150 W and 300 W, respectively. After deposition, samples are annealed in a high vacuum furnace at 400 ˚C. The effects of ZnO-coated substrates on the crystallinity and morphological properties of ITO films are analyzed by X-ray diffractometer, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). X-ray diffraction patterns confirm the hexagonal wurtzite type polycrystalline structure of the ZnO films. FESEM and AFM analyses indicate that the surface morphology of the ITO films is affected by the ZnO buffer layer. Results also reveal that the roughness of ITO thin films is decreased in presence of the ZnO buffer layers. It has been found that ZnO incorporation promotes the crystallization of the ITO layer reduces its resistivity without deteriorating the optical transmittance.
منابع مشابه
Properties of Indium Tin Oxide Thin Films Deposited on Polymer Substrates
Indium tin oxide thin films with different thicknesses were deposited on polymer substrates, held at room temperature, using electron beam evaporation. The dependence of structural properties, optical properties and room temperature resistivity on the indium tin oxide film thickness was studied. X-ray diffraction illustrates the amorphous structure for all the indium tin oxide prepared films. T...
متن کاملProperties of Zinc Oxide Nanowires on Zinc Oxide Thin Film Coated Amorphous Glass Substrates
Nowadays, fabrication of electronic devices using nanostructured materials has been important since it does provide a way of improving devices efficiency. Nanostructured materials have been known to have high surface area per volume and also exhibit unique properties such as visible light transparency and quantum confinement effect. Such characteristics produce excellent reaction area in the de...
متن کاملWork function measurements on indium tin oxide films
We determined the work function of indium tin oxide (ITO) films on glass substrates using photoemission spectroscopy (PES). The ITO coated glass substrates were chemically cleaned ex-situ, oxygen plasma treated ex-situ, or sputtered in-situ. Our results suggest that the performance of ultraviolet photoemission spectroscopy (UPS) measurements can induce a significant work function reduction on t...
متن کاملThermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates
Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...
متن کاملOrganosilane-functionalization of nanostructured indium tin oxide films.
Fabrication and organosilane-functionalization and characterization of nanostructured ITO electrodes are reported. Nanostructured ITO electrodes were obtained by electron beam evaporation, and a subsequent annealing treatment was selectively performed to modify their crystalline state. An increase in geometrical surface area in comparison with thin-film electrodes area was observed by atomic fo...
متن کاملCharacterization of Indium Tin Oxide Films after Annealing in Vacuum
ITO thin films were deposited on glass substrate by dc magnetron sputtering without substrate heating. The effects of annealing in vacuum on the structural, optical and electrical properties were investigated. The samples of 120 nm ITO films were separately annealed at 200, 250, 300 and 350°C for 1 hour. The results showed that the increasing of the annealing temperatures improve the crystallin...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 19- 25
تاریخ انتشار 2016-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023