Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

نویسندگان: ثبت نشده
چکیده مقاله:

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis internal feedback to highlight the effect of past load data for efficient load forecasting results.Testing results on the three year demand profile shows higher performance with respect to commonfeed forward back propagation architecture.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term and Medium-term Gas Demand Load Forecasting by Neural Networks

The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real  concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...

متن کامل

Short Term Load Forecasting Using Predictive Modular Neural Networks

1 Abstract In this paper we present an application of predictive modular neural networks (PREMONN) to short term load forecasting. PREMONNs are a family of probabilistically motivated algorithms which can be used for time series prediction, classification and identification. PREMONNs utilize local predictors of several types (e.g. linear predictors or artificial neural networks) and produce a f...

متن کامل

short-term and medium-term gas demand load forecasting by neural networks

the ability of artificial neural network (ann) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real  concern. as the most applicable network, the ann with multi-layer back propagation perceptrons is used to approximate functions. throughout the current work, the daily effective temperature is determined, and then the weather data w...

متن کامل

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Short-Term Load Forecasting Using Radial Basis Function Neural Network (RBFN) in PJM Electricity Market

A precise short-term load forecasting technique is required for the economic and reliable operation of power system. Modern load forecasting techniques especially ANN methods are attractive as they have the ability to handle the non-linear relationships between load, weather temperature and the factors affecting it directly. In this paper, an investigation on the use of ANN for short term load ...

متن کامل

Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects th...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 9

صفحات  46- 53

تاریخ انتشار 2014-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023