Effects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner-Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/Shrinking Eedge
نویسندگان
چکیده مقاله:
In the present investigation, the magnetohydrodynamic Falkner-Skan flow of tangent hyperbolic nanofluids over a stretching/shrinking wedge with variable suction, internal heat generation/absorption and chemical reaction with activation energy have been scrutinized. Nanofluid model is composed of “Brownian motion’’ and “Thermophoresis’’. Transformed non-dimensional coupled non-linear equations are solved by adopting the fourth-order R-K method along with the shooting technique. A comprehensive analysis of nanofluid velocity, the relative temperature, and its concentration profiles has been addressed. The major outcomes of the current study include that augmentation in the Weissenberg parameter, Hartmann number along with suction impede fluid flow and the shrinkage of the related boundary layer while internal heating develops an ascending thermal boundary layer for static and moving (stretching/shrinking) wedge. An increment in reaction rate undermines the nanoparticle concentration while that of activation energy exhibits a reverse trend.
منابع مشابه
MHD Falkner-Skan Boundary Layer Flow past a Moving Wedge with Suction (Injection)
The behaviour of laminar boundary layer flow field over a solid surface moving with constant speed plays a significant role in several applications of science and technology. This paper examines the steady, laminar incompressible boundary-layer flow of a viscous electrically conducting fluid past a moving wedge with suction (injection) in the presence of an applied magnetic field. The set of pa...
متن کاملFalkner–Skan Flow over a Wedge with Slip Boundary Conditions
b = velocity coefficient cp = specific heat f = nondimensional stream function K = nonequilibrium parameter Kn = Knudsen number k = thermal conductivity l = slip length M = Mach number m = flow exponent n = distance in the normal direction P = pressure Pr = Prandtl number Re = Reynolds number T = temperature U = external x velocity u = x velocity v = y velocity x = position in the flow directio...
متن کاملMHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption
This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transform...
متن کاملMHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet
In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...
متن کاملChemical Reaction and Uniform Heat Generation or Absorption Effects on MHD Stagnation-Point Flow of a Nanofluid over a Porous Sheet
Submitted: Aug 2, 2013; Accepted: Sep 10, 2013; Published: Sep 15, 2013 Abstract: The objective of this work is to analyze the chemical reaction and heat generation or absorption effects on MHD stagnation-point flow of a nanofluid over a porous stretching sheet. The uniform magnetic field strength B is applied in the direction normal to the flow. A highly nonlinear problem of nanofluid is model...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 3
صفحات 640- 652
تاریخ انتشار 2020-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023