Effect of salinity stress and application of salisylic acid on expression of TaSC and TaNIP genes in two bread wheat (Triticum aestivum L.) cultivars
نویسندگان
چکیده مقاله:
Salinity is one of the environmental stresses that affects bread wheat grain yield in most parts of the world. One of the basic strategies to mitgiate the effect of non-biological stresses such as salinity is genetic improvement of crop plants. Identification of stress-associated genes is a prerequisite for genetic improvement. In the present study, the role of a number of genes in the aquaporin family and genes associated with the CDPK pathway in response to environmental stresses was identified as their expression profile analysis in response to salinity stress would facilitate breeding for salinity tolerance. In 2014, the expression of two genes TaNIP and TaSC was studied in two bread wheat cultivars "Bam" tolerant to salinity and "Tajan" sensitive to salinity under salinity stress (170 mM NaCl) and Non-saline conditions. The results showed that TaNIP expression in salt-tolerant cultivar (Bam) significantly increaseed in both leaf and root tissues under salinity stress conditions, but in sensitive cultivar (Tajan) the level of TaNIP expression, especially in leaf tissues, was lower and showed a decreasing trend. In cv. Bam in both leaf and root tissues, after 24 hours, TaSC expression increased in comparion to control. In cv. Tajan, the expression in leaf tissue was generally lower and after 24 hours, the expression level significantly decreased in comparion to control (non-saline). Moreover, expression analysis under the simultaneousapplication of salicylic acid andsodium chloride showed that the expression of both genes in leaf tissues of both bread wheat cultivars significantly increased and the gene expression showed an increasing trend. In conclusion, the results of this experiment indicated that the TaNIP and TaSC genes had different expression trends in tolerant and sensitive bread wheat cultivars under salinity stress conditions. Using salicylic acid as an elicitor also activated the hormonal transduction pathway, which induced the expression of both genes. These findings highlights the role of these genes in salinity tolerance of tolerant bread wheat cv. “Bam”.
منابع مشابه
effect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars
این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...
THE EFFECT OF SALINITY STRESS ON PROLINE METABOLISM IN TWO WHEAT (TRITICUM AESTIVUM) CULTIVARS
The effect of various NaCl treatments (0, 50, 100, 200 and 300 mM) at different growth and development stages (tillering, boot swelling, flowering and polination) of two wheat cultivars (Ghods : salt-sensitive; Boolani : salt-resistant) on proline concentration and the kinetic activity of proline dehydrogenase was studied under greenhouse conditions. Generally, in response to salinity treatment...
متن کاملeffect of postharvest application of chitosan and calcium chloride on decay and quality attributes of sweet cherry
چکیده ندارد.
15 صفحه اولEffect of Zn deficiency stress on expression pattern of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in bread wheat (Triticum aestivum L.) cultivars
A factorial experiment (based on completely randomized design) with three replications was conducted in faculty of agriculture of Urmia University, Iran in 2016 to investigate the effect of soil Zn deficiency on the expression of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in Zn-efficient and Zn-inefficient bread wheat cultivars. Cv. Bayat (Zn-efficient) and cv. Hirmand (Zn-in...
متن کاملCharacterization and Expression of High Temperature Stress Responsive Genes in Bread Wheat (Triticum aestivum L.)
To elucidate the effects of high temperatures, wheat plants (Triticum aestivum cv. CPAN 1676) were given heat shocks at 37°C and 42°C for two hours, and responsive genes were identified through PCR-Select Subtraction technology. Four subtractive cDNA libraries, including three forward and one reverse subtraction, were constructed from three different developmental stages. A total of 5500 ESTs w...
متن کاملAssessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress
Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 24 شماره 1
صفحات 50- 63
تاریخ انتشار 2022-05
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023