Domination number of graph fractional powers

نویسنده

چکیده مقاله:

For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by $G^{frac{m}{n}}$. In this regard, we investigate domination number and independent domination number of fractional powers of graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

domination number of graph fractional powers

for any $k in mathbb{n}$, the $k$-subdivision of graph $g$ is a simple graph $g^{frac{1}{k}}$, which is constructed by replacing each edge of $g$ with a path of length $k$. in [moharram n. iradmusa, on colorings of graph fractional powers, discrete math., (310) 2010, no. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $g$ has been introduced as a fractional power of $g$, denoted by ...

متن کامل

Domination Number of Graph Fractional Powers

For any k ∈ N, the k-subdivision of a graph G is a simple graph G 1 k , which is constructed by replacing each edge of G with a path of length k. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the mth power of the n-subdivision of G has been introduced as a fractional power of G, denoted by G m n . In this regard, we investig...

متن کامل

DOMINATION NUMBER OF TOTAL GRAPH OF MODULE

 Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...

متن کامل

The convex domination subdivision number of a graph

Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

domination number of total graph of module

let $r$ be a commutative ring and $m$ be an $r$-module with $t(m)$ as subset,   the set of torsion elements. the total graph of the module denoted   by $t(gamma(m))$, is the (undirected) graph with all elements of   $m$ as vertices, and for distinct elements  $n,m in m$, the   vertices $n$ and $m$ are adjacent if and only if $n+m in t(m)$. in this paper we   study the domination number of $t(ga...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 6

صفحات  1479- 1489

تاریخ انتشار 2014-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023