Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
نویسندگان
چکیده مقاله:
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this application must be optimized in terms of energy consumption. In other words, the computational complexity of algorithms must be as low as possible and should require minimal interaction between the sensors. For such networks, CS has been used in data gathering and data persistence scenario, in order to minimize the total number of transmissions and consequently minimize the network energy consumption and to save the storage by distributing the traffic load and storage throughout the network. In these applications, the compression stage of CS is performed in sensor nodes, whereas the recovering duty is done in the fusion center (FC) unit in a centralized manner. In some applications, there is no FC unit and the recovering duty must be performed in sensor nodes in a cooperative and distributed manner which we have focused on in this paper. Indeed, the notable algorithm for this purpose is distributed least absolute shrinkage and selection operation (D-LASSO) algorithm which is based on diffusion cooperation structure. This algorithm that competitive to the state-of-the-art CS algorithms has a major disadvantage; it involves matrix inversion that may be computationally demanding for sufficiently large matrices. On this basis, in this paper, we have proposed a distributed CS recovery algorithm for the WSNs with a bi-directional incremental mode of cooperation. Actually, we have proposed a comprehensive distributed framework for the recovery of sparse signals in WSNs. Here, we applied this comprehensive structure to three problems with different constraints which results in three completely distributed solutions named as distributed bi-directional incremental basis pursuit (DBIBP), distributed bi-directional incremental noise-aware basis pursuit (DBINBP) and distributed bi-directional incremental regularized least squares (DBIRLS). The proposed algorithms solely involve linear combinations of vectors and soft thresholding operations. Hence, the computational load is significantly reduced in each sensor. In the proposed method each iteration consists of two phases; clockwise and anti-clockwise phases. At each iteration, in anti-clockwise phase, each node receives the local estimate from its previous neighbor and updates an auxiliary variable. Then in the clockwise phase, each node receives the updated auxiliary variable from its next neighbors to update the local estimate. On the other hand, information exchange in two directions in an incremental manner which we called it bi-directional incremental structure. In an incremental strategy, information flows in a sequential manner from one node to the adjacent node. Unlike the diffusion structure (like as D-LASSO) where each node communicates with all of their neighbors, the incremental mode of cooperation requires the least amount of communication and power. The low computational complexity and better steady state performance are the important features of the proposed methods.
منابع مشابه
Fast distributed bi-directional authentication for wireless sensor networks
In this paper, we present the comparison between a distributed and a centralized authentication protocol for wireless sensor networks (WSN). We outline the difference between authentication and key-agreement schemes and we propose a novel approach based on the use of polynomial functions to produce a distributed bi-directional authentication. The advantages of this approach are: speed of operat...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملA Secure Routing Algorithm for Underwater Wireless Sensor Networks
Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...
متن کاملTracking performance of incremental LMS algorithm over adaptive distributed sensor networks
in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 18 شماره 3
صفحات 65- 76
تاریخ انتشار 2021-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023