Development of Reinforcement Learning Algorithm to Study the Capacity Withholding in Electricity Energy Markets
نویسندگان
چکیده مقاله:
This paper addresses the possibility of capacity withholding by energy producers, who seek to increase the market price and their own profits. The energy market is simulated as an iterative game, where each state game corresponds to an hourly energy auction with uniform pricing mechanism. The producers are modeled as agents that interact with their environment through reinforcement learning (RL) algorithm. Each producer submits step-wise offer curves, which include the quantity-price pairs, to independent system operator (ISO) under incomplete information. An experimental change is employed in the producer's profit maximization model that causes the iterative algorithm converge to a withholding bidding value. The producer can withhold the energy of his own generating unit in a continuous range of its available capacity. The RL relation is developed to prevent from becoming invalid in certain situations. The results on a small test system demonstrate the emergence of the capacity withholding by the producers and its effect on the market price.
منابع مشابه
Analyzing Capacity Withholding in Oligopoly Electricity Markets Considering Forward Contracts and Demand Elasticity
In this paper capacity withholding in an oligopolistic electricity market that all Generation Companies (GenCos) bid in a Cournot model is analyzed and the capacity withheld index, the capacity distortion index and the price distortion index are obtained and formulated. Then a new index, Distortion-Withheld Index (DWI), is proposed in order to measure the potential ability of market for capacit...
متن کاملthe role of russia in transmission of energy from central asia and caucuses to european union
پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...
15 صفحه اولfrom linguistics to literature: a linguistic approach to the study of linguistic deviations in the turkish divan of shahriar
chapter i provides an overview of structural linguistics and touches upon the saussurean dichotomies with the final goal of exploring their relevance to the stylistic studies of literature. to provide evidence for the singificance of the study, chapter ii deals with the controversial issue of linguistics and literature, and presents opposing views which, at the same time, have been central to t...
15 صفحه اولA Reinforcement Learning Algorithm for Agent-Based Modeling of Investment in Electricity Markets
We develop a reinforcement-learning algorithm to model investment in electricity markets, by extending the n-armed bandit algorithm, and prove its equilibrium properties. We show that there is a stationary state of the investment game in which no additional investment or retirement of plants takes place. We model a spot electricity market together with investment decisions. Our experiments sugg...
متن کاملCapacity Competition in Electricity Markets∗
We analyze a two-stage game where capacity constrained electricity generators first choose how much capacity they make available and then compete in a uniform price auction. We study how capacity withholding can be used strategically to enforce market power and how uniform auctions in the price game change the results of capacity constrained competition models. Our main finding is that the unif...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره 1
صفحات 42- 51
تاریخ انتشار 2016-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023