Detection of Fake Accounts in Social Networks Based on One Class Classification
نویسندگان
چکیده مقاله:
Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity measures somethings such as common neighbors, common neighbors graph edges, cosine, and the Jaccard similarity coefficient are calculated based on adjacency matrix of the corresponding graph of the social network. In the next step, in order to reduce the complexity of data, Principal Component Analysis is applied to each computed similarity matrix to provide a set of informative features. then, a set of highly informative eigenvectors are selected using elbow-method. Extracted features are employed to train a One Class Classification (OCC) algorithm. Finally, this trained model is employed to identify fake accounts. As our experimental results indicate the promising performance of the proposed method a detection accuracy and false negative rates are 99.6% and 0%, respectively. We conclude that bringing similarity measures and One Class Classification algorithms into play, rather than the multi-class algorithms, provide better results.
منابع مشابه
Overlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملStrangers Intrusion Detection - Detecting Spammers and Fake Profiles in Social Networks Based on Topology Anomalies
Today’s social networks are plagued by numerous types of malicious profiles which can range from socialbots to sexual predators. We present a novel method for the detection of these malicious profiles by using the social network’s own topological features only. Reliance on these features alone ensures that the proposed method is generic enough to be applied on a range of social networks. The al...
متن کاملFake News in Social Networks
We model the spread of news as a social learning game on a network. Agents can either endorse or oppose a claim made in a piece of news, which itself may be either true or false. Agents base their decision on a private signal and their neighbors’ past actions. Given these inputs, agents follow strategies derived via multi-agent deep reinforcement learning and receive utility from acting in acco...
متن کاملAiding the Detection of Fake Accounts in Large Scale Social Online Services
Users increasingly rely on the trustworthiness of the information exposed on Online Social Networks (OSNs). In addition, OSN providers base their business models on the marketability of this information. However, OSNs suffer from abuse in the form of the creation of fake accounts, which do not correspond to real humans. Fakes can introduce spam, manipulate online rating, or exploit knowledge ex...
متن کاملoverlapping community detection in social networks based on stochastic simulation
community detection is a task of fundamental importance in social network analysis. community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. there exist a variety of methods for community detection based on diffe...
متن کاملA Power Law Approach to Estimating Fake Social Network Accounts
This paper presents a method to validate the true patrons of a brand, group, artist or any other entity on the social networking site Twitter. We analyze the trend of total number of tweets, average retweets and total number of followers for various nodes for different social and political backgrounds. We argue that average retweets to follower ratio reveals the overall value of the individual ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 11 شماره 2
صفحات 173- 183
تاریخ انتشار 2019-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023