Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes
نویسندگان
چکیده مقاله:
With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's card information for the purpose of charging purchases to the account or removing funds from it. Credit card fraud schemes are divided into two categories: application fraud and account takeover. When a credit card account gets opened without someone’s permission is called application fraud. Account takeovers, on the other hand, is when an existing credit card account is hijacked, and the criminal obtains enough personal information to modify the account's information. The criminal then subsequently reports the card lost or stolen in order to obtain a new card and make unauthorized purchases with it. Data mining as a technique capable of identifying useful patterns among a great deal of data is an effective method in detecting fraud in this regard. The main purpose of this paper is to present a new method for detecting unattended outliers that require high accuracy and recall. The method presented in this study is based on a combination of NMF, hierarchical k-means, k-means and k-nearest neighbors’ techniques. To evaluate the proposed method of outlier detection, several experiments were performed using standard data, in terms of accuracy and recall with Isolation Forest, k-nearest neighbors, Median kNN, and Average kNN. The dataset used in this paper is one that was provided in a 2016 Kaggle competition and was provided by a European bank after anonymization. The results, corroborate that the proposed method has higher accuracy and recall than other algorithms.
منابع مشابه
Suspicious Behavior Detection in Debit Card Transactions using Data Mining: A Comparative Study using Hybrid Models
The approach used in this paper is an implementation of a data mining process against real-life transactions of debit cards with the aim of detecting suspicious behavior. The framework designed for this purpose has been obtained through merging supervised and unsupervised models. First, due to unlabeled data, Twostep and Self-Organizing Map algorithms have been used in clustering the transactio...
متن کاملCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Detecting Significant Alarms using Outlier Detection Algorithms
Although alarms in plants are designed to notify any anomaly or faults in order to prevent accidents or to improve process, it is very difficult for the operators to identify meaningful alarms, since there are large volumes of false and nuisance alarms. Outlier detection algorithms are used to identify anomaly in data, and thus they can be used to suggest abnormal alarms. In this research, we a...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملbank card fraud detection using artificial neural network
there is no accurate data for the bank cards fraud in iran. but, it seems to be a growing trend in this regard and in the near future it is going to become one of the critical problems in iran's banking system. unfortunately, not enough research works have been done in this field in our country and the banking system requires models that are efficient enough to ensure safe use of bank card...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 19 شماره 3
صفحات 87- 104
تاریخ انتشار 2022-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023