Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform
نویسندگان
چکیده مقاله:
Buried channels are one of the stratigraphic hydrocarbon traps. They are often filled with a variety of porous and permeable sediments so they are important in the exploration of oil and gas reservoirs. In reflection seismic data, high-frequency components are sensitive to the channel thickness, whereas, low-frequency components are sensitive to the channel infill materials. Therefore, decomposition of seismic data to its spectral components provides useful information about both thickness and infill materials of buried channels.A 4D spectral data is produced by applying spectral decomposition to a 3D seismic data cube which is decomposed into several single frequency 3D cubes. Since different frequencies carry different types of information, each single frequency cube cannot show all subsurface information simultaneously. Therefore, we used color stacking method and constructed RGB plots, which represent more information than single frequency volumes. In this paper, we applied three methods of Deconvolutive Short Time Fourier Transform (DSTFT), S Transform (ST) and Short Time Fourier Transform (STFT) to a land seismic data from an oil field in the south-west of Iran. We used the resulting spectral volumes to create RGB color stacking plots for tracing buried channels. According to the results, the RGB plots based on the DSTFT method revealed more details than the ST and STFT methods.
منابع مشابه
Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملFractional Fourier Transform Based OFDMA for Doubly Dispersive Channels
The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...
متن کاملAdaptive synchrosqueezing based on a quilted short-time Fourier transform
In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the s...
متن کاملAudio Denoising Based on Short Time Fourier Transform
Received Jul 8, 2017 Revised Nov 20, 2017 Accepted Dec 11, 2017 This paper presents a novel audio de-noising scheme in a given speech signal. The recovery of original from the communication channel without any noise is a difficult task. Many de-noising techniques have been proposed for the removal of noises from a digital signal. In this paper, an audio denoising technique based on Short Time F...
متن کاملPolynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform
Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator,...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 5
صفحات 104- 112
تاریخ انتشار 2015-12-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023