Degradation of Organic Pollutant in Waste Water via CdMoO4 Nanostructures as an Effective Photocatalyst; Ultrasound-assisted Preparation and Characterization
نویسنده
چکیده مقاله:
Sphere-like cadmium molybdate (CdMoO4) nanostructures have been synthesized by a large scale and simple sonochemical method by using Cd(Sal)2 (Sal=salicylidene) and Na2MoO4.2H2O for the first time. The effects of sonochemical irradiation time, sonochemical power, temperature, solvent, surfactant and cadmium source were considered to obtain a controlled shape. The as-prepared nanostructured cadmium molybdate was analyzed by UV–Vis diffuse reflectance spectroscopy (DRS), energy dispersive X-ray microanalysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). It was established that morphology, particle size and phase composition of the final products could be greatly affected by these parameters. The photocatalytic activity of the synthesized products has been compared for the photo- degradation activity of methylene blue (MB). The distinguished degradation activity of cadmium molybdate photocatalyst can be ascribed to the powerful UV light absorption, excellent charge separation efficiency, nice particle size distribution and proper band gap of the nanostructures.
منابع مشابه
Facile Fabrication of Co3O4 Nanostructures as an Effective Photocatalyst for Degradation and Removal of Organic Contaminants
Co3O4 nanoparticles were synthesized via a simple Co-precipitation reaction between precursors of cobalt and NH3. The effect of different parameters such as concentration of NH3 and precursors of cobalt on the size and photocatalytic activity of the products was investigated. The achieved nanoparticles were characterized by X-ray powder diffraction analysis, field emission scanning electron mic...
متن کاملStudy nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants
In the present study, comparison of photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...
متن کاملStudy nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants
In the present study, comparison of photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...
متن کاملPerovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation
A novel graphitic carbon nitride (g-C3N4)-CaTiO3 (CTCN) organic-inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by studying the degradation of an aqueous solution of...
متن کاملstudy nanostructures of semiconductor zinc oxide (zno) as a photocatalyst for the degradation of organic pollutants
in the present study, comparison of photocatalytic activity of nanostructures semiconductor zinc oxide (zno) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...
متن کاملDegradation and removal of organic pollutants by BaFe2O4 nanostructures, synthesis and characterization
BaFe2O4 nanostructures have been synthesized through a simple sonochemical reduction approach. X-ray diffraction characterization suggested that the product consists of cubic phase pure BaFe2O4. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 4
صفحات 623- 629
تاریخ انتشار 2019-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023