Crack Tip Constraint for Anisotropic Sheet Metal Plate Subjected to Mode-I Fracture
نویسندگان
چکیده مقاله:
On the ground of manufacturing, sheet metal parts play a key role as they cover about half of the production processes. Sheet metals are commonly obtained from rolling and forming processes which causes misalignment of micro structure resulting obvious anisotropic characteristics and micro cracks. Presence of micro cracks poses serious attention, when stresses at the tip reach to the critical value. Present research deals with a thin anisotropic plate, containing an edge crack subjected to mode-I condition. To predict the nature of crack propagation, anisotropic triaxiality is formulated with special reference to Lankford’s coefficient and degree of anisotropy. The distribution of magnitude of anisotropic triaxiality is shown with respect to polar angle at crack tip supplemented by plastic zone shapes. Numerical evaluation has been carried out by considering five different cases of plane stress condition using Hill-von Mises yield criteria. Critical values so obtained apropos respective cases, as traced on the yield locus had been used to predict the location of crack propagation in sheet metal. It is revealed that the angle through which the crack propagate do not remain invariable for all combinations of Lankford’s coefficient and degree of anisotropy but it shifts for two of the five cases taken into consideration.
منابع مشابه
Model for a piezoelectric strip of crack arrest subjected to Mode-I loadings
Purpose: In the present paper a crack arrest model is proposed for an infinitely long narrow poled piezoelectric strip embedded with a centrally situated finite hairline straight crack. Design/methodology/approach: The ceramic of the strip is assumed to be mechanically brittle and electrically ductile. Combined mechanical and electrical loads applied at the edge of the strip open the rims of th...
متن کاملFinite Element Modeling of Crack Initiation Angle Under Mixed Mode (I/II) Fracture
Present study deals with the prediction of crack initiation angle for mixed mode (I/II) fracture using finite element techniques and J-Integral based approach. The FE code ANSYS is used to estimate the stress intensity factor numerically. The estimated values of SIF were incorporated into six different crack initiation angle criteria to predict the crack initiation angle. Single edge crack spec...
متن کاملPrediction of Instability in Planar Anisotropic Sheet Metal Forming Processes
In this paper instability of planar anisotropic sheet metal during a few forming processes is investigated for the first time. For this reason components of the constitutive tangent tensor for planar anisotropic sheets are developed. By using the above tensor location of necking is predicted. Direction of the shear band is also predicted using the acoustic tensor. A finite element program is pr...
متن کاملCrack Tip Micromaching by Femtosecond Laser for Fracture Testing of Metal Laminates
This thesis presents an experimental study of the effects of ultrafast laser ablation on the mechanical properties of metal laminates followed by FEA simulation to elucidate future experimental potential. The metals investigated are copper, niobium, and copper/niobium accumulative roll bonded (ARB) laminates. The two laminate materials in this study have a nominal layer thickness of 1.8 microns...
متن کاملMapping Static and Dynamic Crack-Tip Deformations Using Reflection-Mode Digital Gradient Sensing: Applications to Mode-I and Mixed-Mode Fracture
The reflection-mode digital gradient sensing (rDGS) method is extended for visualizing and quantifying crack-tip deformations in solids under quasi-static and dynamic loading conditions. The r-DGS technique employs digital image correlation principles to quantify two orthogonal surface slopes simultaneously in specularly reflective solids by measuring small deflections of light rays. Here, for ...
متن کاملContinuing Crack-tip Deformation and Fracture for Plane-strain Crack Growth in Elastic-plastic Solids
ANALYSIS of the deformation field consistent with a Prandtl stress distribution travelling with an advancing plane-strain crack reveals the functional form of the near tip crack profile in an elastic-plastic solid. The crack opening 6 is shown to have the form 6 N r In (const./r) at a distance r from the tip. This observation coupled with data generated from finite element investigations of gro...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 384- 402
تاریخ انتشار 2016-06-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023