Cover interpolation functions and h-enrichment in finite element method

نویسندگان

  • E. Khoshbavar rad Ph.D. Student., Department of Civil Engineering, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran
  • H. Arzani Assistant professor, Faculty of civil engineering, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran
  • M. Ghorbanzadeh M.Sc. Graduate Student, Department of Civil Engineering, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran.
چکیده مقاله:

This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of the domain is thus reduced and limited to the allowable range. In order to increase the accuracy of solutions to an excellent level, the results of mesh refinement are reassessed in the next steps and the nodes exceeding the value of allowable error are determined. The method automatically improves the subdomain by increasing the order of  interpolation cover  functions which  yields to solutions of appropriate accuracy. A comparison of solutions achieved by the proposed method with that of other methods and also the accurate solutions for linear elasticity examples proves acceptable efficiency and accuracy of the proposed method. In this research, we illustrate the power of the strategy through the solutions obtained for various problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On enrichment functions in the extended finite element method

This paper presents mathematical derivation of enrichment functions in the extended finite element method (XFEM) for numerical modelling of strong and weak discontinuities. The proposed approach consists in combining the level set method with characteristic functions as well as domain decomposition and reproduction technique. We start with the simple case of a triangular linear element cut by o...

متن کامل

Finite Element Interpolation of Nonsmooth Functions

In this paper, we propose a modified Lagrange type interpolation operator to approximate functions in Sobolev spaces by continuous piecewise polynomials. In order to define interpolators for "rough" functions and to preserve piecewise polynomial boundary conditions, the approximated functions are averaged appropriately either on dor (d 1 )-simplices to generate nodal values for the interpolatio...

متن کامل

Interpolation functions in the immersed boundary and finite element methods

In this paper, we review the existing interpolation functions and introduce a finite element interpolation function to be used in the immersed boundary and finite element methods. This straightforward finite element interpolation function for unstructured grids enables us to obtain a sharper interface that yields more accurate interfacial solutions. The solution accuracy is compared with the ex...

متن کامل

Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems

This paper presents a study of generalized enrichment functions for three-dimensional curved crack fronts. Two coordinate systems used in the definition of singular curved crack front enrichment functions are analyzed. In the first one, a set of Cartesian coordinate systems defined along the crack front is used. In the second case, the geometry of the crack front is approximated by a set of cur...

متن کامل

Integration of Singular Enrichment Functions in the Generalized/Extended Finite Element Method for Three-Dimensional Problems

A mapping method is developed to integrate weak singularities which result from enrichment functions in the generalized/extended FEM. The integration scheme is applicable to 2D and 3D problems including arbitrarily shaped triangles and tetrahedra. Implementation of the proposed scheme in existing codes is straightforward. Numerical examples for 2D and 3D problems demonstrate the accuracy and co...

متن کامل

Generalized finite element enrichment functions for discontinuous gradient fields

A general GFEM/XFEM formulation is presented to solve two-dimensional problems characterized by C continuity with gradient jumps along discrete lines, such as those found in the thermal and structural analysis of heterogeneous materials or in line load problems in homogeneous media. The new enrichment functions presented in this paper allow solving problems with multiple intersecting discontinu...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  72- 79

تاریخ انتشار 2017-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023