Conventional steam activation for conversion of oil palm kernel shell biomass into activated carbon via biochar product

نویسنده

  • A.C. Affam Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam|Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
چکیده مقاله:

Conventional steam activation pyrolysis of waste materials such as oil palm kernel shell for production of biochar was investigated using central composite design. Conventional steam activation was carried out via an initial carbonization of oil palm kernel shell to obtain biochar and thereafter steam activation of the biochar using the conventional heating to produce activated carbon. Additionally, removal of chemical oxygen demand and colour was studied alongside the production. Optimum yield was obtained at about 90 min and 725oC. Out of the time duration, 80 min was for carbonation and 10 min was for steam activation. Further extension of time was not significant whereas increasing temperature was able to increase the pores found on the biochar. Under the optimum condition, fixed carbon was 19.39%, chemical oxygen demand and colour removal were 32.02 and 61.15%, respectively at 90 min adsorption time. However, when time was extended to 120 min, chemical oxygen demand (48.2%) and colour (94.19%) removal were achieved. The Brunauer–Emmett–Teller surface area and micropore area of the oil palm kernel shell based activated carbon was 620.45 m2/g and 550.4 m2/g, respectively. The conventional steam activation is an effective method that can be employed in production of activated carbon from waste oil palm kernel shell.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Activated Carbon from Palm-oil Shell by Pyrolysis and Steam Activation in a Fixed Bed Reactor

The research objective was to produce activated carbon from palm-oil shells by one step pyrolysis and steam activation in a fixed bed reactor with the diameter of 100 mm. The studied variables were activation temperature, activation time, palm-oil shell sizes and flow rate of air. The results showed that the optimum condition was 1.18-2.36 mm of palm-oil shells at 750C for 2 hr with air flow ra...

متن کامل

Characterization of Bio-oil from Palm Kernel Shell Pyrolysis

Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 μm, 300–600 μm, 600μm...

متن کامل

Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no hold...

متن کامل

Steam Gasification of Palm Kernel Shell (PKS): Effect of Fe/BEA and Ni/BEA Catalysts and Steam to Biomass Ratio on Composition of Gaseous Products

This work presents the hydrogen production from steam gasification of palm kernel shell (PKS) at 700 C in the presence of 5% Ni/BEA and 5% Fe/BEA as catalysts. The steam gasification was performed in two-staged reactors to evaluate the effect of calcinations temperature and the steam to biomass ratio on the product gas composition. The catalytic activity of Ni/BEA catalyst decreases with increa...

متن کامل

Carbon emissions from forest conversion by Kalimantan oil palm plantations

Oil palm supplies >30% of world vegetable oil production1. Plantation expansion is occurring throughout the tropics, predominantly in Indonesia, where forests with heterogeneous carbon stocks undergo high conversion rates2–4. Quantifying oil palm’s contribution to global carbon budgets therefore requires refined spatio-temporal assessments of land cover converted to plantations5,6. Here, we rep...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 1

صفحات  15- 30

تاریخ انتشار 2020-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023