Computing Szeged index of graphs on ‎triples

نویسندگان

  • M. Darafsheh School of Mathematics, College of Science, University of Tehran
  • M. Namdari Department of Mathematics, Shahid Chamran University of Ahvaz
  • R. Modabernia Department of Mathematics, Shahid Chamran University of Ahvaz
چکیده مقاله:

ABSTRACT Let ‎G=(V,E) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎V‎‎‎ ‎and ‎edge ‎set ‎‎‎E. ‎The Szeged index ‎of ‎‎G is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎G ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎If ‎‎‎‎S ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎V ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎S ‎of ‎size ‎3. ‎Then ‎we ‎define ‎three ‎‎types ‎of ‎intersection ‎graphs ‎with ‎vertex ‎set V. These graphs are denoted by ‎‎ ‎‎ and we will find their ‎Szeged ‎indices.‎

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

computing szeged index of graphs on ‎triples

abstract let ‎g=(v,e) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎v‎‎‎ ‎and ‎edge ‎set ‎‎‎e. ‎the szeged index ‎of ‎‎g is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎g ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎if ‎‎‎‎s ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎v ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎s ‎of ‎size ‎3. ‎then ‎we ‎define ‎three ‎...

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

Weighted Szeged Index of Graphs

The weighted Szeged index of a connected graph G is defined as Szw(G) = ∑ e=uv∈E(G) ( dG(u) + dG(v) ) nu (e)n G v (e), where n G u (e) is the number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. In this paper, we have obtained the weighted Szeged index Szw(G) of the splice graph S(G1, G2, y, z) and link graph L(G1, G2, y, z).

متن کامل

Computing the Szeged index of 4,4 ׳-bipyridinium dendrimer

Let e be an edge of a G connecting the vertices u and v. Define two sets N1 (e | G) and N2(e |G) as N1(e | G)= {xV(G) d(x,u) d(x,v)} and N2(e | G)= {xV(G) d(x,v) d(x,u) }.The number of elements of N1(e | G) and N2(e | G) are denoted by n1(e | G) and n2(e | G) , respectively. The Szeged index of the graph G is defined as Sz(G) ( ) ( ) 1 2 n e G n e G e E    . In this paper we compute th...

متن کامل

Revised Szeged Index of Product Graphs

The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...

متن کامل

Edge Szeged Index of Unicyclic Graphs

The edge Szeged index of a connected graph G is defined as the sum of products mu(e|G)mv(e|G) over all edges e = uv of G, where mu(e|G) is the number of edges whose distance to vertex u is smaller than the distance to vertex v, and mv(e|G) is the number of edges whose distance to vertex v is smaller than the distance to vertex u. In this paper, we determine the n-vertex unicyclic graphs with th...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 2

صفحات  175- 180

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023