Completeness results for metrized rings and lattices

نویسنده

چکیده مقاله:

The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Together, these facts answer a question posed by J. Gleason. From this example, rings of arbitrary characteristic with the same properties are obtained. The result that $B$ is complete in its metric is generalized to show that if $L$ is a lattice given with a metric satisfying identically either the inequality $d(xvee y,,xvee z)leq d(y,z)$ or the inequality $d(xwedge y,xwedge z)leq d(y,z),$ and if in $L$ every increasing Cauchy sequence converges and every decreasing Cauchy sequence converges, then every Cauchy sequence in $L$ converges; that is, $L$ is complete as a metric space. We show by example that if the above inequalities are replaced by the weaker conditions $d(x,,xvee y)leq d(x,y),$ respectively $d(x,,xwedge y)leq d(x,y),$ the completeness conclusion can fail. We end with two open questions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness Results for Circumscription

We inv estigate the model theory of the notion of circumscription, and find completeness theorems that provide a partial converse to a result of McCarthy. We show that the circumscriptive theorems are precisely the truths of the minimal models, in the case of various classes of theories, and for various versions of circumscription. We also present an example of commonsense reasoning in which fi...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Distributive Lattices of Jacobson Rings

We characterize the distributive lattices of Jacobson rings and prove that if a semiring is a distributive lattice of Jacobson rings, then, up to isomorphism, it is equal to the subdirect product of a distributive lattice and a Jacobson ring. Also, we give a general method to construct distributive lattices of Jacobson rings.

متن کامل

Some results on $L$-complete lattices

The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...

متن کامل

On completeness results for predicate

In this paper we deal with generic expansions of first-order predicate logics of some left-continuous t-norms with a countable set of truth-constants. Besides already known results for the case of Lukasiewicz logic, we obtain new conservativeness and completenesss results for some other expansions. Namely, we prove that the expansions of predicate Product, Gödel and Nilpotent Minimum logics wit...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 11  شماره Special Issue Dedicated to Prof. George A. Grätzer

صفحات  149- 168

تاریخ انتشار 2019-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023