Comparison of Topological Indices Based on Iterated ‘Sum’ versus ‘Product’ Operations

نویسندگان

  • A. BALABAN Texas A&M University at Galveston, USA
  • P. KHADIKAR Khatipura, Indore India
  • S. AZIZ Institute of Engineering and Technology, India
چکیده مقاله:

The Padmakar-Ivan (PI) index is a first-generation topological index (TI) based on sums over all edges between numbers of edges closer to one endpoint and numbers of edges closer to the other endpoint. Edges at equal distances from the two endpoints are ignored. An analogous definition is valid for the Wiener index W, with the difference that sums are replaced by products. A few other TIs are discussed, and comparisons are made between them. The best correlation is observed between indices G and PI; satisfactory correlations exist between W/n3 and PI/n2, where n denotes the number of vertices in the hydrogen-depleted graph.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

comparison of topological indices based on iterated ‘sum’ versus ‘product’ operations

the padmakar-ivan (pi) index is a first-generation topological index (ti) based on sums overall edges between numbers of edges closer to one endpoint and numbers of edges closer to theother endpoint. edges at equal distances from the two endpoints are ignored. an analogousdefinition is valid for the wiener index w, with the difference that sums are replaced byproducts. a few other tis are discu...

متن کامل

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

On the bounds of degree-based topological indices of the Cartesian product of F-sum of connected graphs

Topological indices are the mathematical tools that correlate the chemical structure with various physical properties, chemical reactivity or biological activity numerically. A topological index is a function having a set of graphs as its domain and a set of real numbers as its range. In QSAR/QSPR study, a prediction about the bioactivity of chemical compounds is made on the basis of physico-ch...

متن کامل

Distance-Based Topological Indices of Tensor Product of Graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G)  V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

Comparison Between Two Eccentricity-based Topological Indices of Graphs

For a connected graph G, the eccentric connectivity index (ECI) and the first Zagreb eccentricity index of G are defined as ( ) ( ) deg ( ) ( ) i c G i G i v V G ξ G v ε v   and ( 2 1 ) ( ) ( ) i G i v G V E G ε v   , respectively, where deg ( ) G i v is the degree of i v in G and ( ) G i ε v denotes the eccentricity of vertex i v in G. In this paper we compare the eccentric connectivity ...

متن کامل

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره Issue 1 (Special Issue on the Role of PI Index in Nanotechnology)

صفحات  43- 67

تاریخ انتشار 2010-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023