Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

نویسندگان

چکیده مقاله:

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aerial vehicles (UAV) have been attended to be an easy-to-use, cost-effective tool for the classification of trees. In fact, given the cost-efficient nature of UAV derived SfM, coupled with its ease of application, it became a popular choice. The type of imagery is an important factor in classification analysis because the spatial and spectral resolution can influence the accuracy of classification. On the other hand, classification algorithms also play an important role in the accuracy of tree species identification. So, this study investigated the performance of four classifiers for tree species classification using UAV-based high-resolution imagery in broadleaf forests and takes a comparative approach to examine the three non-parametric classifiers including support vector machines (SVM), random forest (RF), artificial neural network (ANN), and one parametric classifier including linear discriminant analysis (LDA) classifiers in heterogeneous forests of Noor city located in Mazandaran province. In June 2019, the study area was photographed. The field survey was carried out to record the species and position of the mature overstory trees which were clearly identifiable on the orthomosaics. Individual tree crowns were clipped by one-meter buffer and the digit numbers were summarized at for each tree by computing descriptive statistics from the orthomosaics. Using zonal statistics, mean, standard deviation, variance, unique, range, mode, and median were calculated for raw bands (Red, Green, Blue), vegetation indices (NRB, NGB), and band ratios (G/R, R/B) from RGB orthomosaics. We classified the tree into 4 classes: Parrotia persica (Ironwood tree), Populus capsica (Caspian poplar), Ulmus minor (Common Elm), and Quercus castaneifolia (Chestnut-leaved oak). Finally, the classification algorithms were applied using R software. The classification accuracy for identified trees was performed using 10-fold cross-validation by computing the producer’s accuracy, user’s accuracy, and Overall accuracy. All algorithms resulted in overall accuracies above 80%. Of course, the results showed that, as a parametric algorithm, LDA with an overall accuracy of 0.87 provided the best results for tree classification, because it does not require the tuning of free parameters. As for parameter value, the mean was the most important that this can be related to the similarity of this feature in any sample. Caspian poplar with user accuracy of 0.97 and Ironwood tree with user accuracy of 0.72 had the highest and lowest classification accuracy, respectively. Caspian poplar high accuracy is probably due to its crown color which is quite different from the other species. The main error (misclassification) is a classification between “Ironwood tree” and “Common Elm” classes. This may be caused by the fact that the spectral signatures between Ironwood tree and Common Elm trees are very similar. In general, our study showed that UAV derived orthomosaic can be used for tree classification with very high accuracy in mix broadleaf forests by different algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

Trust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic

Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...

متن کامل

Email Classification Using Machine Learning Algorithms

Email has become one of the frequently used forms of communication. Everyone has at least one email account. Inflow of spam messages is a major problem faced by email users. Currently there are many spam filtering techniques. As the spam filtering techniques came up, spammers improved their methods of spamming. Thus, an effective spam filtering technique is the timely requirement. In this paper...

متن کامل

Classification using Machine Learning Algorithms (MALA)

This report summarizes the results of our work on trying to predict the health of a baby. We used two different machine learning algorithms, Weka and our own Naive Bayes Classifier. We discovered that placental ratio and Term/Preterm Birth yield interesting results, based on our list of 19 features. While the placental ratio results are puzzling, we learned that the two features Eclampsia and C...

متن کامل

Classification of Mars Mcmurdo Panorama Images Using Machine Learning Techniques

This paper presents a novel application of advanced machine learning techniques for Mars terrain image classification. Fuzzy-rough feature selection (FRFS) is employed in conjunction with Support Vector Machines (SVMs) to construct image classifiers. These techniques are for the first time, integrated to address problems in space engineering where the images are of many classes and large-scale....

متن کامل

Classification of Indian Stock Market Data Using Machine Learning Algorithms

Classification of Indian stock market data has always been a certain appeal for researchers. In this paper, first time combination of three supervised machine learning algorithms, classification and regression tree (CART) , linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are proposed for classification of Indian stock market data, which gives simple interpretation o...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 2

صفحات  1- 10

تاریخ انتشار 2020-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023