Comparison of different kinetic models for adsorption of acid blue 62 as an environmental pollutant from aqueous solution onto mesoporous Silicate SBA-15 modified by Tannic acid
نویسندگان
چکیده مقاله:
In this work, adsorption kinetics were investigated in order to remove the acid blue 62 off the aqueous solutions using mesoporous silicate SBA-15 loaded with tannic acid (tannin-SBA-15). Nitrogen adsorption and desorption test (BET), X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FT-IR) analysis characterize synthesized composite. The impacts of some parameters such as PH, adsorbent dosage as well as contact time were studied and optimized at temperatures between 25 to 45 oC. The study also was conducted on intra-particle diffusion, pseudo first-order, pseudo second-order and Elovich kinetic models. In order to have the best correlation with the experimental data, the model of the second-order kinetics was discovered. The model of the intra-particle diffusion represents that both boundary layer and intra-particle diffusion processes control the mechanisms of adsorption of acid blue 62 onto tannin-SBA-15.
منابع مشابه
Investigation of Acid Blue 62 Dye Adsorption using SBA-15/Polyaniline Mesoporous Nanocomposite: Kinetic and Thermodynamic Study
Background and Purpose: This study aimed to investigate the adsorption of Acid Blue 62 (AB62) as an anionic dye from aqueous solution onto as SBA-15/Polyaniline (SBA-15/PAni) mesoporous nanocomposite a low-cost adsorbent and feasible. Materials and Methods: Fourier transform infra-red spectroscopy (FTIR), Filed Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TE...
متن کاملAdsorption of Acid Dyes on Modified Mesoporous SBA-15: Comparison of Two Dyes
In this study, SBA-15-PAMAM mesoporous Nano-adsorbent was synthesized, characterized and applied for adsorption of Acid dyes (Acid Blue 62 (AB62) and Acid Red 266 (AR266)) from aqueous Medias. Adsorption of AB62 and AR266 on SBA-15 ordered mesoporous silica, polyamidoamine functionalized SBA-15(SBA-15-PAMAM), has been investigated. In order to assess the synthesized adsorbent constructional, FT...
متن کاملComparison of Linear and Nonlinear Kinetic Models and Adsorption Isotherms of Zinc from an Aqueous Solution by Biochar
Fruits and citrus wastes are generated in the food industry in large quantities. Their management in Iran, as one of the major hubs of fruits and citrus production, is of great importance. In this study, the biochar samples were prepared from pomegranate, orange and lemon peel waste produced in a juice factory using the pyrolysis process in the range of 400-500 °C; then their efficiency for zin...
متن کاملAdsorption of Acid blue 92 dye on modified diatomite by nickel oxide nanoparticles in aqueous solutions
Adsorbent prepared from waste plants for the treatment of dyeing effluents have high significance in environmental sustainability. In this research, adsorption of Acid Blue 92AB 92 dye from aqueous solutions on raw and modified diatomite nickel oxide nanoparticles was studied. The effect of different operation parameters such as pH, contact time, initial dye concentration, calcinations and sorb...
متن کاملStudy on the Adsorption of Heavy Metal Ions from Aqueous Solution on Modified SBA-15
Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic–inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272), respectively. The structure and physicochemical properties of the materials were cha...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 1
صفحات 79- 88
تاریخ انتشار 2018-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023