Comparative Analysis of Machine Learning Algorithms with Optimization Purposes
نویسنده
چکیده مقاله:
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to optimize the precision of defect detection of concrete slabs depending on their qualitative evaluation. Based on this idea, some machine learning algorithms such as C4.5 decision tree, RIPPER rule learning method and Bayesian network have been studied to explore the defect of concrete and to supply a decision system to speed up the defect detection process. The results from the examinations show that the proposed RIPPER rule learning algorithm in combination with Fourier Transform feature extraction method could get a defect detection rate of 93% as compared to other machine learning algorithms.
منابع مشابه
Comparative Analysis of Machine Learning Algorithms for Audio Signals Classification
ABSTARCT Research in the area of Audio Classification and retrieval, in comparison with closely related areas, such as speech recognition and speaker identification is relatively new Audio Classification is an important issue in current audio processing and content analysis researches.. Generally speaking, audio classification is a pattern recognition problem. Pattern recognition is the scienti...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملPractical Bayesian Optimization of Machine Learning Algorithms
The use of machine learning algorithms frequently involves careful tuning of learning parameters and model hyperparameters. Unfortunately, this tuning is often a “black art” requiring expert experience, rules of thumb, or sometimes bruteforce search. There is therefore great appeal for automatic approaches that can optimize the performance of any given learning algorithm to the problem at hand....
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملAnnotating mobile phone location data with activity purposes using machine learning algorithms
متن کامل
A Comparative Study of Training Algorithms for Supervised Machine Learning
Classification in data mining has gained a lot of importance in literature and it has a great deal of application areas from medicine to astronomy, from banking to text classification.. It can be described as supervised learning algorithm as it assigns class labels to data objects based on the relationship between the data items with a pre-defined class label. The classification techniques are ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 2
صفحات 63- 75
تاریخ انتشار 2016-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023