Calculation of absorbed dose in lung tissue equivalent and compared it with prediction of a treatment planning system using Collapsed Cone Convolution algorithm
نویسندگان
چکیده مقاله:
External radiotherapy is used for treatment of various types of cancers. Due to the impossibility of measuring the absorbed dose delivered to different organs during irradiation, treatment planning systems (TPSs) have been utilized for calculation of absorbed dose before a radiotherapy procedure. Thus, the accuracy and precession of the TPS is essential.The aim of this study is investigation of accuracy the TPS based on Collapse Cone Convolution (CCC) algorithm in a lung tissue equivalent material. The charge generated in the sensitive volume of PTW-30013 ionization chamber in water and lung tissue equivalent phantoms placed in the radiation fields of Primus 6MV linac was calculated using MCNP.4C code and in the ratio of generated charge in this phantom was determined. To validate the simulations, the ratio of generated charge in sensitive volume of ionization chamber in mentioned phantoms was determined experimentally. The agreement between the calculations and measurement confirm the simulation method. The calculated absorbed dose delivered in the lung tissue equivalent material for 200 MU radiation was 154.99 cGy using simulations. The CCC algorithms predicted this value as 163.98 cG. As well as, the absorbed dose in different depths was measured using GR-200 Dosimeters. The relative differences between the values obtained by simulation and CCC algorithm and between the results of TLD measurements and CCC algorithms are more than 5.5% and 14%, respectively. So, by considering the acceptable uncertainties suggested by ICRU for TPS algorithms and the results of this work, it can be concluded that, the CCC algorithm is not sufficiently accurate to determine of absorbed dose delivered to tissues with density lower than water.
منابع مشابه
Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy
Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...
متن کاملSU-E-T-537: Photon Beam Modeling and Verification of Collapsed Cone Convolution Algorithm for Dose Calculation in a Radiation Treatment Planning System.
PURPOSE The aim of this study is to evaluate the accuracy the collapsed cone convolution (CCC) algorithm for dose calculation in a radiation treatment planning system (TPS). METHODS We modeled various photon beams for various setup conditions in a radiation treatment planning system (CorePLANTM, Seoul C&J, Korea). The beam models were generated at various set-up conditions such as open beam o...
متن کاملComparison and Evaluation of the Effects of Rib and Lung Inhomogeneities on Lung Dose in Breast Brachytherapy using a Treatment Planning System and the MCNPX Code
Introduction: This study investigates to what extent the computed dose received by lung tissue in a commercially available treatment planning system (TPS) for 192Ir high-dose-rate breast brachytherapy is accurate in view of tissue inhomogeneities and presence of ribs. Materials and Methods: A CT scan of the breast was used to construct a patient-equivalent phantom in the clinical treatment plan...
متن کاملVerification of lung dose in an anthropomorphic phantom calculated by the collapsed cone convolution method.
Verification of calculated lung dose in an anthropomorphic phantom is performed using two dosimetry media. Dosimetry is complicated by factors such as variations in density at slice interfaces and appropriate position on CT scanning slice to accommodate these factors. Dose in lung for a 6 MV and 10 MV anterior-posterior field was calculated with a collapsed cone convolution method using an ADAC...
متن کاملAssessment of Dose Calculation Accuracy of TiGRT Treatment Planning System for Physical Wedged fields in Radiotherapy
Introduction Wedge modifiers are commonly applied in external beam radiotherapy to change the dose distribution corresponding to the body contour and to obtain a uniform dose distribution within the target volume. Since the radiation dose delivered to the target must be within ±5% of the prescribed dose, accurate dose calculation by a treatment planning system (TPS) is important. The objective ...
متن کاملEvaluation of Dose Calculation Accuracy of Isogray Treatment Planning System in Craniospinal Radiotherapy
Introduction: Craniospinal radiotherapy is a therapeutic technique for central nervous system (CNS) tumors, which requires meticulous attention to technique and dosimetry.Treatment planning system (TPS) is one of the main equipment in radiotherapy; therefore, the evaluation of its accuracy is essential for dose calculation. The present study evaluates the validity of Isogray TPS in craniospinal...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 3
صفحات 17- 24
تاریخ انتشار 2020-06
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023