Bayesian Nonparametric and Parametric Inference
نویسنده
چکیده مقاله:
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
منابع مشابه
Bayesian Parametric and Nonparametric Inference for Multiple Record Linkage
Record linkage is an historically important statistical problem arising when data about some population of individuals is spread over several files. As kids, we grew up with the game “Where in the world is Carmen San Diego”? Nowadays, the name of the game for the U.S. Census Bureau and other organizations is who’s the real Steve Fienberg, where they are dealing with deciding if someone named St...
متن کاملBayesian Nonparametric Weighted Sampling Inference
It has historically been a challenge to perform Bayesian inference in a design-based survey context. The present paper develops a Bayesian model for sampling inference in the presence of inverse-probability weights. We use a hierarchical approach in which we model the distribution of the weights of the nonsampled units in the population and simultaneously include them as predictors in a nonpara...
متن کاملNonparametric Applications of Bayesian Inference
The paper evaluates the usefulness of a nonparametric approach to Bayesian inference by presenting two applications. The approach is due to Ferguson (1973, 1974) and Rubin (1981). Our first application considers an educational choice problem. We focus on obtaining a predictive distribution for earnings corresponding to various levels of schooling. This predictive distribution incorporates the p...
متن کاملMatchIt: Nonparametric Preprocessing for Parametric Causal Inference
MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The softw...
متن کاملBayesian Nonparametric Predictive Inference and Bootstrap Techniques
Abst rac t . We address the question as to whether a prior distribution on the space of distribution functions exists which generates the posterior produced by Efron's and Rubin's bootstrap techniques, emphasizing the connections with the Dirichlet process. We also introduce a new resampling plan which has two advantages: prior opinions are taken into account and the predictive distribution of ...
متن کاملBayesian Nonparametric Inference - Why and How.
We review inference under models with nonparametric Bayesian (BNP) priors. The discussion follows a set of examples for some common inference problems. The examples are chosen to highlight problems that are challenging for standard parametric inference. We discuss inference for density estimation, clustering, regression and for mixed effects models with random effects distributions. While we fo...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره None
صفحات 143- 163
تاریخ انتشار 2002-11
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023