Axisymmetric Magnetohydrodynamic Squeezing flow of Nanofluid in Porous Media under the influence of Slip Boundary Condition
نویسندگان
چکیده مقاله:
The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. As a part of the renewed interests, this paper presents the study of axisymmetric magnetohydrodynamic squeezing flow of nanofluid in porous media under the influence of slip boundary condition using differential transformation method. Good agreements are established when the results of the differential transformation method are compared with the results of numerical method Runge-Kutta coupled with shooting method. Also, the analytical solution is used to investigate the effects of porous medium, magnetic field and slip boundary on the steady two-dimensional axisymmetric flow of the nanofluid. It is shown from the results that the velocity of the fluid increases as the magnetic field and porous parameters increase under slip condition while the velocity of the fluid decreases with increase in the magnetic field and porous parameter under no slip condition. By increasing the slip parameter, the velocity of the fluid increases while the velocity of the fluid decreases as the Reynolds number increases. Studies on nanofluidics such as energy conservation, friction reduction and micro mixing biological samples can be enhanced and better understood by the insights given in this present study.
منابع مشابه
Correction: Modeling and Analysis of Unsteady Axisymmetric Squeezing Fluid Flow through Porous Medium Channel with Slip Boundary
The aim of this article is to model and analyze an unsteady axisymmetric flow of non-conducting, Newtonian fluid squeezed between two circular plates passing through porous medium channel with slip boundary condition. A single fourth order nonlinear ordinary differential equation is obtained using similarity transformation. The resulting boundary value problem is solved using Homotopy Perturbat...
متن کاملSeries solutions for magnetohydrodynamic flow of non- Newtonian nanofluid and heat transfer in coaxial porous cylinder with slip conditions
A study on the flow of non-Newtonian nanofluid between two coaxial cylinders is made. Two types of series solutions are constructed by choosing constant and variable viscosity. The effects of heat transfer analysis on nanoparticles in the presence of magnetohydrodynamics, porosity and partial slip are also examined. To drive the solutions of nonlinear boundary value problems, we have used a rec...
متن کاملAnalysis of squeezing flow of viscous fluid under the influence of slip and magnetic field: comparative studies of different approximate analytical methods
The various industrial and engineering applications of flow of fluid between parallel plates have continued to generate renewed interests. In this work, a comparative study of approximate analytical methods is carried out using differential transformation,homotopy perturbation, Adomian decomposition, variation of parameter and variational iteration methods for the analysis of a steady two-dimen...
متن کاملdegradation of oil impregnated paper insulation under influence of repetitive fast high voltage impulses
در طی سالهای اخیراستفاده ازمنابع انرژی تجدید پذیر در شبکه های مدرن بنا به دلایل زیست محیطی و اقتصادی به طور گسترده استفاده شده است همچون نیروگاههای بادی و خورشیدی .ولتاژتولیدی این نیروگاهها اغلب به فرم dc می باشد وادوات الکترونیک قدرت به عنوان مبدل و پل بین شکل موج dc وac استفاده می شوند.این پروسه باعث ایجاد پالسهایی برروی شکل موج خروجی می شود که می تواند وارد تجهیزات قدرت همچون ترانسفورماتور ی...
15 صفحه اولNumerical Simulation of MHD Boundary Layer Stagnation Flow of Nanofluid over a Stretching Sheet with Slip and Convective Boundary Conditions
An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...
متن کاملMultiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis
In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 122- 132
تاریخ انتشار 2018-07-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023