Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

نویسنده

چکیده مقاله:

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ldots,x_n]$ over field $K$ which are associated to  unrooted trees  such that if  $G$ is a unrooted tree and $I_t(G)$ is the ideal generated by the paths of $G$ of length $t$, then $J_t(G):=I_t(G)^vee$, where $I^vee$ denotes the Alexander dual of $I$, satisfies the persistence property. We also present a class of graphs such that the path ideals generated by paths of length two satisfy the persistence property. We conclude  this paper by giving a criterion for normally torsion-freeness of monomial ideals.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

let  $r$ be a commutative noetherian ring and $i$ be an ideal of $r$. we say that $i$ satisfies the persistence property if  $mathrm{ass}_r(r/i^k)subseteq mathrm{ass}_r(r/i^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{ass}_r(r/i)$ denotes the set of associated prime ideals of $i$. in this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $r=k[x_1,ld...

متن کامل

Stability of Associated Primes of Monomial Ideals*

Let I be a monomial ideal of a polynomial ring R. In this paper we determine a number B such that Ass (I/I) = Ass (I/I) for all n ≥ B. 2000 Mathematics Subject Classification: 13A15, 13D45

متن کامل

Embedded Associated Primes of Powers of Square-free Monomial Ideals

An ideal I in a Noetherian ringR is normally torsion-free if Ass(R/I) = Ass(R/I) for all t ≥ 1. We develop a technique to inductively study normally torsion-free square-free monomial ideals. In particular, we show that if a squarefree monomial ideal I is minimally not normally torsion-free then the least power t such that I has embedded primes is bigger than β1, where β1 is the monomial grade o...

متن کامل

Associated primes of monomial ideals and odd holes in graphs

Let G be a finite simple graph with edge ideal I (G). Let I (G)∨ denote the Alexander dual of I (G). We show that a description of all induced cycles of odd length in G is encoded in the associated primes of (I (G)∨)2. This result forms the basis for a method to detect odd induced cycles of a graph via ideal operations, e.g., intersections, products and colon operations. Moreover, we get a simp...

متن کامل

Colorings of Hypergraphs, Perfect Graphs, and Associated Primes of Powers of Monomial Ideals

Let H denote a finite simple hypergraph. The cover ideal of H, denoted by J = J(H), is the monomial ideal whose minimal generators correspond to the minimal vertex covers of H. We give an algebraic method for determining the chromatic number of H, proving that it is equivalent to a monomial ideal membership problem involving powers of J . Furthermore, we study the sets Ass(R/Js) by exploring th...

متن کامل

Combinatorial Characterizations of Generalized Cohen-macaulay Monomial Ideals

We give a generalization of Hochster’s formula for local cohomologies of square-free monomial ideals to monomial ideals, which are not necessarily square-free. Using this formula, we give combinatorial characterizations of generalized Cohen-Macaulay monomial ideals. We also give other applications of the generalized Hochster’s formula.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  15- 25

تاریخ انتشار 2014-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023