Assessment of antioxidant and antibacterial activities of Zinc Oxide nanoparticles, Graphene and Graphene decorated by Zinc Oxide nanoparticles
نویسندگان
چکیده مقاله:
Zinc Oxide nanoparticles (ZnO-NPs) and graphene carbon material, due to lower drug resistance, can replace antibiotics, and by decorating of graphene with Zn-NPs, their properties can be greatly improved. The purpose of this study was to evaluate the antioxidant and antibacterial effects of ZnO-NPs biosynthesized using Crocus Sativus petal extract, graphene and graphene decorated by ZnO-NPs biosynthesized using Crocus Sativus petal extract (G-ZnO). Their physicochemical characterizations were performed by UV-Vis spectroscopy, Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), revealing that ZnO-NPs with a mean size of 25 nm and spherical-shape were distributed uniformly on the surface of the graphene without aggregation. The antioxidant activities of ZnO-NPs, graphene and G-ZnO were evaluated using DPPH and ABTS assays. Antibacterial activities of three compounds were tested against Gram negative bacteria Escherichia coli (E. coli) and Gram positive bacteria Staphylococcus aureus (S. aureus) using macrodilution method. The results of this study showed that these three compounds have antioxidant and antibacterial effects. And it was show that but also antioxidant and antibacterial activity of G-ZnO was higher than ZnO-NPs and graphene. G-ZnO could be useful as a natural antioxidant and antibacterial in the pharmacy industry.
منابع مشابه
Biosynthesis of Zinc Oxide Nanoparticles using Intracellular Extract of Saccharomyces cerevisiae and Evaluation of its Antibacterial and Antioxidant Activities
Introduction: Attention to the biosynthesis of nanoparticles (NPs) has been increased recently since they are cost-effective, eco-friendly, and potential alternatives to chemical and physical methods. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using an intracellular extract of Saccharomyces cerevisiae. Moreover, it was attempted to evaluate their antibacterial and antioxi...
متن کاملDefluoridation of Aqueous Solution by Graphene and Graphene Oxide Nanoparticles: Thermodynamic and Isotherm Studies
Fluoride, a non-essential element, can enter water resources through several natural processes and human activities. The benefits and risks of fluoride depend on the concentration of this anion on drinking waters. In the present study, the performances of graphene and graphene oxide nanoparticles were investigated for the removal of fluoride from aqueous solution. In the present resea...
متن کاملDye removal from water by zinc ferrite-graphene oxide nanocomposite
In this work, zinc ferrite magnetic and zinc ferrite-graphene oxide nanocomposite were synthesized through a facile hydrothermal method and dye removal capability as an adsorbent were studied. Fourier transform infrared spectroscopy FT-IR, X-ray diffraction XRD and scanning electron microscopy SEM were used to characterize the synthesized nanocomposite. The UV-Vis results showed that the additi...
متن کاملEnhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing.
A process involving the filtration of graphene oxide (GO) dispersion through an alumina membrane, followed by oxygen annealing to synthesize alumina nanoparticles exclusively at the edges of holes or vacancies in the reduced graphene oxide (rGO) plane, is used to prepare paper-like composites with a 21% enhanced electrical conductivity. Moreover, the rGO/alumina nanocomposites have a smaller ba...
متن کاملPhotocatalytic Degradation of Triton X-100 by Zinc oxide Nanoparticles
In this study the application of ZnO nanoparticles to UV photocatalytic degradation of nonionic surfactantTriton X-100 in aqueous media was investigated. The affecting factors on the photodegradation such as TritonX-100 initial concentration, nanocatalyst weight, pH, temperature and other parameters were studied anddescribed in details. The degradation rate was found to be strongly influenced b...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 4
صفحات 350- 358
تاریخ انتشار 2019-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023