Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal
نویسندگان
چکیده مقاله:
Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process. Methods: In this paper, by combining the Wiener causality concept and the conditional mutual information, a nonlinear effective connectivity measure called Transfer Entropy (TE) is presented to describe the relationship between EEG signals at frontal and temporal regions from eight volunteers in three anesthetic states (awake, unconscious and recovery). This index is also compared with Granger causality and partial directional coherence methods as common effective connectivity indexes. Results: Based on a statistical analysis of the probability predictive value and Kruskal-Wallis statistical method, TE can effectively fallow the effect-site concentration of propofol and distinguish the anesthetic states well, and perform better than the other effective connectivity indexes. This index is also better than Bispectral Index (BIS) as commercial DOA monitor because of the faster response and higher correlation with the drug concentration effect-site, less irregularity in the unconscious state and better ability to distinguish three states of anesthestesia. Conclusion: TE index is a confident indicator for designing a new monitoring system of the two EEG channels for DOA estimation.
منابع مشابه
Depth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملTinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity
Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain...
متن کاملComputer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
متن کاملAnalysis of EEG via Multivariate Empirical Mode Decomposition for Depth of Anesthesia Based on Sample Entropy
In monitoring the depth of anesthesia (DOA), the electroencephalography (EEG) signals of patients have been utilized during surgeries to diagnose their level of consciousness. Different entropy methods were applied to analyze the EEG signal and measure its complexity, such as spectral entropy, approximate entropy (ApEn) and sample entropy (SampEn). However, as a weak physiological signal, EEG i...
متن کاملEffects of Anesthesia on Effective Connectivity in the Brain
The brain constitutes a formidably complicated structural network. There are three main types of connectivity used to describe neuronal networks, which reflect three parallel levels of investigation: anatomical connectivity, functional connectivity and effective connectivity. Effective connectivity indicates the direct influence that a node exerts on another, and in the context of neuronal circ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره None
صفحات 269- 280
تاریخ انتشار 2021-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023