Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse ‎functions

نویسندگان

  • K. Maleknejad‎ Department of Mathematics‎, ‎Karaj‎ Branch‎, ‎Islamic Azad University‎, Karaj‎, ‎Iran.
  • M. Fallahpour‎‎ Department of Mathematics‎, ‎Karaj‎ Branch‎, ‎Islamic Azad University‎, Karaj‎, ‎Iran.‎
  • M. Khodabin‎ Department of Mathematics‎, ‎Karaj‎ Branch‎, ‎Islamic Azad University‎, Karaj‎, ‎Iran.‎
چکیده مقاله:

In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

approximation solution of two-dimensional linear stochastic volterra-fredholm integral equation via two-dimensional block-pulse ‎functions

in this paper, a numerical efficient method based on two-dimensional block-pulse functions (bpfs) is proposed to approximate a solution of the two-dimensional linear stochastic volterra-fredholm integral equation. finally the accuracy of this method will be shown by an example.

متن کامل

Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions

T The nonlinear and linear Volterra-Fredholm ordinary integral equations arise from various physical and biological models. The essential features of these models are of wide applicable. These models provide an important tool for modeling a numerous problems in engineering and science [6, 7]. Modelling of certain physical phenomena and engineering problems [8, 9, 10, 11, 12] leads to two-dimens...

متن کامل

APPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET

In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.  

متن کامل

approximation solution of two-dimensional linear stochastic fredholm integral equation by applying the haar wavelet

in this paper, we introduce an efficient method based on haar wavelet to approximate a solutionfor the two-dimensional linear stochastic fredholm integral equation. we also give an example to demonstrate the accuracy of the method.

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 4

صفحات  423- 430

تاریخ انتشار 2016-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023