An Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates
نویسندگان
چکیده مقاله:
In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general forms and where no limiting assumption is used. This generality allows simulate varieties of applicable problems. At the end, numerical results are presented and compared with classic theory of thermoelasticity.
منابع مشابه
An Exact Solution for Classic Coupled Thermoporoelasticity in Cylindrical Coordinates
In this paper the classic coupled thermoporoelasticity model of hollow and solid cylinders under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source, and the injected volume rate per unit volume of a distr...
متن کاملAn Exact Solution for Classic Coupled Magneto-Thermo-Elasticity in Cylindrical Coordinates
In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body fo...
متن کاملAn Exact Solution for Lord-Shulman Generalized Coupled Thermoporoelasticity in Spherical Coordinates
In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the generalized coupled equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit...
متن کاملAn Exact Solution for Classic Coupled Thermoporoelasticity in Axisymmetric Cylinder
In this paper, the classic coupled poro-thermoelasticity model of hollow and solid cylinders under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a distribute ...
متن کاملDynamic Coupled Thermo-Viscoelasticity of a Spherical Hollow Domain
The generalized coupled thermo-viscoelasticity of hollow sphere subjected to thermal symmetric shock load is presented in this paper. To overcome the infinite speed of thermal wave propagation, the Lord-Shulman theory is considered. Two coupled equations, namely, the radial equation of motion and the energy equation of a hollow sphere are obtained in dimensionless form. Resulting equations are ...
متن کاملTransmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping: Nonexponential, Strong, and Polynomial Stability
We investigate transmission problems between a (thermo-)viscoelastic system with Kelvin-Voigt damping, and a purely elastic system. It is shown that neither the elastic damping by Kelvin-Voigt mechanisms nor the dissipative effect of the temperature in one material can assure the exponential stability of the total system when it is coupled through transmission to a purely elastic system. The ap...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 152- 167
تاریخ انتشار 2016-03-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023