An Algorithm for Predicting Recurrence of Breast Cancer Using Genetic Algorithm and Nearest Neighbor Algorithm

نویسندگان

  • Golabpour, Amin Ph.D. in Medical Informatics, Assistant Professor, Shahroud University of Medical Sciences, School of Paramedical, Shahroud, Iran
  • Sadeghi, Setayesh M.Sc. in Computer Engineering, Computer Engineering Dept., Islamic Azad University, Kerman, Iran
چکیده مقاله:

Introduction: Breast cancer is one of the most common types of cancer and the most common type of malignancy in women, which has been growing in recent years. Patients with this disease have a chance of recurrence. Many factors reduce or increase this probability. Data mining is one of the methods used to detect or anticipate cancers, and one of its most common uses is to predict the recurrence of breast cancer. Cases and Methods: Out of 699 patients with breast cancer, 458 (66%) of them did not relapse and 241 (34%) of their cancer recurred. This information was collected from 91 to 94 years of history of patients with breast cancer in the academic Jihad. In this study, the combination of two nearest neighboring algorithms and a genetic algorithm are proposed to predict the relapse of patients with breast cancer. First, the nearest neighboring algorithm is presented to predict the recurrence of breast cancer. Then, using the genetic algorithm, the dependent variables are reduced to make the model more appropriate. Results: The number of dependent variables is 14 variables, which is reduced by 6 genetic algorithms to better predict the model. To evaluate the model, the health parameter is used, which is 77.14% for the proposed model, which could not be more suitable for other methods. Conclusion: In this study, the proposed algorithm was examined with other predictive methods and it was determined that the proposed algorithm is better.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diabetes Prediction by Optimizing the Nearest Neighbor Algorithm Using Genetic Algorithm

Introduction: Diabetes or diabetes mellitus is a metabolic disorder in body when the body does not produce insulin, and produced insulin cannot function normally. The presence of various signs and symptoms of this disease makes it difficult for doctors to diagnose. Data mining allows analysis of patients’ clinical data for medical decision making. The aim of this study was to provide a model fo...

متن کامل

Diabetes Prediction by Optimizing the Nearest Neighbor Algorithm Using Genetic Algorithm

Introduction: Diabetes or diabetes mellitus is a metabolic disorder in body when the body does not produce insulin, and produced insulin cannot function normally. The presence of various signs and symptoms of this disease makes it difficult for doctors to diagnose. Data mining allows analysis of patients’ clinical data for medical decision making. The aim of this study was to provide a model fo...

متن کامل

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

An Enhancement of k-Nearest Neighbor Classification Using Genetic Algorithm

K-Nearest Neighbor Classification (kNNC) makes the classification by getting votes of the k-Nearest Neighbors. Performance of kNNC is depended largely upon the efficient selection of k-Nearest Neighbors. All the attributes describing an instance does not have same importance in selecting the nearest neighbors. In real world, influence of the different attributes on the classification keeps on c...

متن کامل

An Improved k-Nearest Neighbor Classification Using Genetic Algorithm

k-Nearest Neighbor (KNN) is one of the most popular algorithms for pattern recognition. Many researchers have found that the KNN algorithm accomplishes very good performance in their experiments on different data sets. The traditional KNN text classification algorithm has three limitations: (i) calculation complexity due to the usage of all the training samples for classification, (ii) the perf...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 4

صفحات  309- 319

تاریخ انتشار 2020-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023