ADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE
نویسندگان
چکیده مقاله:
In this work, we investigate admitting center map on multiplicative metric space and establish some fixed point theorems for such maps. We modify the Banach contraction principle and the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some useful theorems. Our results on multiplicative metric space improve and modify some fixed point theorems in the literature.
منابع مشابه
Proximity Point Properties for Admitting Center Maps
In this work we investigate a class of admitting center maps on a metric space. We state and prove some fixed point and best proximity point theorems for them. We obtain some results and relevant examples. In particular, we show that if $X$ is a reflexive Banach space with the Opial condition and $T:Crightarrow X$ is a continuous admiting center map, then $T$ has a fixed point in $X.$ Also, we ...
متن کاملSpace-Times Admitting Isolated Horizons
We characterize a general solution to the vacuum Einstein equations which admits isolated horizons. We show it is a non-linear superposition – in precise sense – of the Schwarzschild metric with a certain free data set propagating tangentially to the horizon. This proves Ashtekar’s conjecture about the structure of spacetime near the isolated horizon. The same superposition method applied to th...
متن کاملA Note on Quadratic Maps for Hilbert Space Operators
In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...
متن کاملContractive maps in Mustafa-Sims metric spaces
The xed point result in Mustafa-Sims metrical structures obtained by Karapinar and Agarwal[Fixed Point Th. Appl., 2013, 2013:154] is deductible from a corresponding one stated in terms ofanticipative contractions over the associated (standard) metric space.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 39- 51
تاریخ انتشار 2020-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023