Additivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras

نویسندگان

  • A. Taghavi Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-1468, Babolsar, Iran.
  • H. Rohi Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-1468, Babolsar, Iran.
  • V. Darvish Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-1468, Babolsar, Iran.
چکیده مقاله:

Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A}$. If $eta$ is a non-zero complex number such that $|eta|neq1$, then $Phi$ is additive. Moreover, if $eta$ is rational then $Phi$ is $ast$-additive.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

additivity of maps preserving jordan $eta_{ast}$-products on $c^{*}$-algebras

let $mathcal{a}$ and $mathcal{b}$ be two $c^{*}$-algebras such that $mathcal{b}$ is prime. in this paper, we investigate the additivity of maps $phi$ from $mathcal{a}$ onto $mathcal{b}$ that are bijective, unital and satisfy $phi(ap+eta pa^{*})=phi(a)phi(p)+eta phi(p)phi(a)^{*},$ for all $ainmathcal{a}$ and $pin{p_{1},i_{mathcal{a}}-p_{1}}$ where $p_{1}$ is a nontrivial projection in $mathcal{a...

متن کامل

On Preserving Properties of Linear Maps on $C^{*}$-algebras

Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

A Note on Spectrum Preserving Additive Maps on C*-Algebras

Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.

متن کامل

Additive Maps Preserving Idempotency of Products or Jordan Products of Operators

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...

متن کامل

Additivity of Jordan Elementary Maps on Rings

We prove that Jordan elementary surjective maps on rings are automatically additive. Elementary operators were originally introduced by Brešar and Šerml ([1]). In the last decade, elementary maps on operator algebras as well as on rings attracted more and more attentions. It is very interesting that elementary maps and Jordan elementary maps on some algebras and rings are automatically additive...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره Issue 7 (Special Issue)

صفحات  107- 116

تاریخ انتشار 2015-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023