A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
نویسندگان
چکیده مقاله:
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically for activities, to achieve more flexibility and extensibility. Our method is verified via two experiments. In the first experiment, it is compared to a naïve Bayes approach and three ontology based methods. In this experiment our method outperforms the naïve Bayes classifier, having 88.9% accuracy. However, it is comparable and similar to the ontology based schemes, but since no manual ontology definition is needed, our method is more flexible and extensible than the previous ones. In the second experiment, a larger dataset is used and our method is compared to three approaches which are based on naïve Bayes classifiers, hidden Markov models, and hidden semi Markov models. Three features are extracted from sensors’ data and incorporated in the benchmark methods, making nine implementations. In this experiment our method shows an accuracy of 94.2% that in most of the cases outperforms the benchmark methods, or is comparable to them.
منابع مشابه
Activity Recognition In Smart Home Using Weighted Dempster- Shafer Theory
Smart homes are equipped with a variety of sensors to monitor the human activities. The information gathered from the heterogeneous sensors may not be always reliable and have different degrees of uncertainly. One of the most important techniques have been proposed to deal with uncertainty is Dempster-Shafer Theory (DST). In this paper, aims to define more precise sensor reliability and decreas...
متن کاملSensor Fusion Using Dempster-Shafer Theory
Context-sensing for context-aware HCI challenges the traditional sensor fusion methods with dynamic sensor configuration and measurement requirements commensurate with human perception. The Dempster-Shafer theory of evidence has uncertainty management and inference mechanisms analogous to our human reasoning process. Our Sensor Fusion for Contextaware Computing Project aims to build a generaliz...
متن کاملUsing Dempster-Shafer Theory of Evidence for Situation Inference
In the domain of ubiquitous computing, the ability to identify the occurrence of situations is a core function of being 'contextaware'. Given the uncertain nature of sensor information and inference rules, reasoning techniques that cater for uncertainty hold promise for enabling the inference process. In our work, we apply the Dempster Shafer theory of evidence to determine situation occurrence...
متن کاملCombination of Evidence in Dempster-Shafer Theory
Dempster-Shafer theory offers an alternative to traditional probabilistic theory for the mathematical representation of uncertainty. The significant innovation of this framework is that it allows for the allocation of a probability mass to sets or intervals. DempsterShafer theory does not require an assumption regarding the probability of the individual constituents of the set or interval. This...
متن کاملA Generalized Dempster-Shafer Evidence Theory
Dempster–Shafer evidence theory has been widely used in various fields of applications. Besides, it has been proven that the quantum theory has powerful capabilities of solving the decision making problems. However, due to the inconsistency of the expression, the classical Dempster–Shafer evidence theory modelled by real numbers can not be integrated directly with the quantum theory modelled by...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2
صفحات 245- 258
تاریخ انتشار 2017-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023