A one-dimensional model for variations of longitudinal wave velocity under different thermal conditions

نویسندگان

  • Farhang Honarvar Faculty of Mechanical Engineering, K. N. Toosi University of Technology, 19991-43344, Tehran, Iran
  • Ramin Shabani Faculty of Mechanical Engineering, K. N. Toosi University of Technology, 19991-43344, Tehran, Iran
چکیده مقاله:

Ultrasonic testing is a versatile and important nondestructive testing method. In many industrial applications, ultrasonic testing is carried out at relatively high temperatures. Since the ultrasonic wave velocity is a function of the workpiece temperature, it is necessary to have a good understanding of how the wave velocity and test piece temperature are related. In this paper, variations of longitudinal wave velocity in the presence of a uniform temperature distribution or a thermal gradient is studied using one-dimensional theoretical and numerical models. The numerical model is based on finite element analysis. A linear temperature gradient is assumed and the length of the workpiece and the temperature of the hot side are considered as varying parameters. The workpiece is made of st37 steel, its length is varied in the range of 0.04-0.08 m and the temperature of the hot side is changed from 400 K to 1000 K. The results of the theoretical model are compared with those obtained from the finite element model (FEM) and very good agreement is observed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

a numerical approach for one dimensional thermal consolidation of clays

in saturated soils, heating induces thermal expansion of both grains and the pore fluid. lower thermal expansion coefficient of aggregates results in the increase of pore pressure and reduction of the effective stress besides subsequent volume changes due to the dissipation of pore pressure and heat transfer. dissipation of thermally induced pore pressure with time is a coupled thermo-hydro-mec...

متن کامل

Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions

In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and t...

متن کامل

A One-Dimensional Model for Dispersive Wave Turbulence

A family of one-dimensional nonlinear dispersive wave equations is introduced as a model for assessing the validity of weak turbulence theory for random waves in an unambiguous and transparent fashion. These models have an explicitly solvable weak turbulence theory which is developed here, with Kolmogorov-type wave number spectra exhibiting interesting dependence on parameters in the equations....

متن کامل

Stochastic Superparameterization in a One-dimensional Model for Wave Turbulence

Superparameterization is a multiscale numerical method wherein solutions of prognostic equations for small scale processes on local domains embedded within the computational grid of a large scale model are computed and used to force the large scales. It was developed initially in the atmospheric sciences, but stands on its own as a nascent numerical method for the simulation of multiscale pheno...

متن کامل

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  79- 90

تاریخ انتشار 2016-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023