A Note on the Strong Law of Large Numbers

نویسندگان

  • H. A. Azarnoosh
  • V. Fakoor
چکیده مقاله:

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem (Theorem 2.1), we arrive at an improvement of Marcinkiewicz– Zygmund theorem for pairwise NQD random variables.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Strong Law of Large Numbers

N lim 1( 1: f(nkx)) = 0, N-N k_l or roughly speaking the strong law of large numbers holds for f(nkx) (in fact the authors prove that Ef(nkx)/k converges almost everywhere) . The question was raised whether (2) holds for any f(x) . This was known for the case nk=2k( 2) . In the present paper it is shown that this is not the case . In fact we prove the following theorem . THEOREM 1 . There exist...

متن کامل

A note on the strong law of large numbers for associated sequences

assuming of course that the covariance exists. The infinite sequence {Xn, n ≥ 1} is said to be associated if every finite subfamily is associated. The concept of association was introduced by Esary et al. [1]. There are some results on the strong law of large numbers for associated sequences. Rao [4] developed the Hajek-Renyi inequality for associated sequences and proved the following theorem....

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

On the strong law of large numbers and additive functions

Let f(n) be a strongly additive complex-valued arithmetic function. Under mild conditions on f , we prove the following weighted strong law of large numbers: if X, X1, X2, . . . is any sequence of integrable i.i.d. random variables, then lim N→∞ ∑N n=1 f(n)Xn ∑N n=1 f(n) = EX a.s.

متن کامل

Strong law of large numbers on graphs and groups

We introduce the notion of the mean-set (expectation) of a graph(group-) valued random element ξ and prove a generalization of the strong law of large numbers on graphs and groups. Furthermore, we prove an analogue of the classical Chebyshev’s inequality for ξ. We show that our generalized law of large numbers, as a new theoretical tool, provides a framework for practical applications; namely, ...

متن کامل

On Strong Law of Large Numbers for Dependent Random Variables

Throughout this paper, let denote the set of nonnegative integer, let {X,Xn, n ∈ } be a sequence of random variables defined on probability space Ω,F, P , and put Sn ∑n k 1 Xk. The symbol C will denote a generic constant 0 < C < ∞ which is not necessarily the same one in each appearance. In 1 , Jajte studied a large class of summability method as follows: a sequence {Xn, n ≥ 1} is summable to X...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره None

صفحات  107- 111

تاریخ انتشار 2005-11

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023