A Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes
نویسنده
چکیده مقاله:
The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple graph to each hexagonal system.
منابع مشابه
a note on the first geometric-arithmetic index of hexagonal systems and phenylenes
the first geometric-arithmetic index was introduced in the chemical theory as the summationof 2 du dv /(du dv ) overall edges of the graph, where du stand for the degree of the vertexu. in this paper we give the expressions for computing the first geometric-arithmetic index ofhexagonal systems and phenylenes and present new method for describing hexagonal systemby corresponding a simple graph...
متن کاملThe Geometric-Arithmetic Index of Benzenoid Systems and Phenylenes
The geometric-arithmetic index of graph G is defined as GA(G) = ∑ uv∈E(G) 2 √ dudv du+dv , du (or dv) is the degree the vertex u (or v). The GA index of benzenoid systems and phenylenes are computed, a simple relation is established between the geometric-arithmetic of a phenylene and the corresponding hexagonal squeeze in this paper. Mathematics Subject Classification: 05C05, 05C12
متن کاملThe First Geometric–Arithmetic Index of Some Nanostar Dendrimers
Dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core [1,4]. These are key molecules in nanotechnology and can be put to good use. In this article, we compute the first geometricarithmetic index of two infinite classes of dendrimers.
متن کاملSome remarks on the arithmetic-geometric index
Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.
متن کاملOn Second Geometric-Arithmetic Index of Graphs
The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.
متن کاملOn Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 2
صفحات 101- 108
تاریخ انتشار 2011-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023