A note on symmetric duality in vector optimization problems
نویسندگان
چکیده مقاله:
In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".
منابع مشابه
A Note on Nondifferentiable Symmetric Duality
Under suitable hypotheses on the function / , the two constrained minimization problems: MIN/ fyy subject to x > 0, -fy > 0; MAX/ fxx subject to y > 0, fx > 0; are well known each to be dual to the other. This symmetric duality result is now extended to a class of nonsmooth problems, assuming some convexity hypotheses. The first problem is generalized to: MINf(x,y) py subject to x e T,-p e S* n...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملDuality for vector optimization problems via a general scalarization
Considering a vector optimization problem to which properly efficient solutions are defined by using convex cone-monotone scalarization functions, we attach to it, by means of perturbation theory, new vector duals. When the primal problem, the scalarization function and the perturbation function are particularized, different dual vector problems are obtained, some of them already known in the l...
متن کاملNote on Mond-Weir type nondifferentiable second order symmetric duality
In this paper, we point out some inconsistencies in the earlier work of Ahmad and Husain (Appl. Math. Lett. 18, 721–728, 2005), and present the correct forms of their strong and converse duality theorems.
متن کاملWEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملVector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره None
صفحات 0- 0
تاریخ انتشار 2013-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023