A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
نویسندگان
چکیده مقاله:
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable time. Thus, we propose an efficient multi-objective hybrid genetic algorithm.we assign fitness based dominance relation and weighted aggregate in the genetic algorithm and local search, respectively.We take a variable neighborhood search algorithm as a local improving procedure in the proposed algorithm to the best individuals in the population of GA every specific number generations. To prove the efficiency of our proposed HGA, a number of test problems are solved. Its reliability based on some comparison metrics is compared with a prominent multi-objective evolutionary algorithm, namely SPEA-II. The computational results show that the proposed HGA outperforms the SPEAII algorithm.
منابع مشابه
A New Hybrid Genetic Algorithm for the Job Shop Scheduling Problem with Setup Times
In this paper we face the Job Shop Scheduling Problem with Sequence Dependent Setup Times by means of a genetic algorithm hybridized with local search. We have built on a previous work and propose a new neighborhood structure for this problem which is based on reversing operations on a critical path. We have conducted an experimental study across the conventional benchmarks and some new ones of...
متن کاملA fuzzy multi-objective linear programming approach for solving a new multi-objective job shop scheduling with sequence-dependent setup times
This paper presents a new mathematical model for a bi-objective job shop scheduling problem with sequence-dependent setup times that minimizes the weighted mean completion time and the weighted mean tardiness time. For solving this multi-objective model, we develop a fuzzy multi-objective linear programming (FMOLP) model. In this problem, a proposed FMOLP method is applied with respect to the o...
متن کاملA multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation
Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...
متن کاملA Hybrid Multi Objective Algorithm for Flexible Job Shop Scheduling
Scheduling for the flexible job shop is very important in both fields of production management and combinatorial optimization. However, it quit difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. The combining of several optimization criteria induces additional complexity and new problems. In this paper, a...
متن کاملa fuzzy multi-objective linear programming approach for solving a new multi-objective job shop scheduling with sequence-dependent setup times
this paper presents a new mathematical model for a bi-objective job shop scheduling problem with sequence-dependent setup times that minimizes the weighted mean completion time and the weighted mean tardiness time. for solving this multi-objective model, we develop a fuzzy multi-objective linear programming (fmolp) model. in this problem, a proposed fmolp method is applied with respect to the o...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 26 شماره 2
صفحات 207- 218
تاریخ انتشار 2013-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023