A new iteration method for solving a class of Hammerstein type integral equations system

نویسندگان

  • Maryam Dehghan Department of Mathematics, Persian Gulf University, Bushehr 75169, Iran
  • Saeed Karimi Department of Mathematics, Persian Gulf University, Bushehr 75169, Iran
چکیده مقاله:

In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bound estimation of the new iterative method are also discussed. Finally, some numerical examples are given to compare the performance of the proposed method with the existing methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new iteration method for solving a class of hammerstein type integral equations system

in this work, a new iterative method is proposed for obtaining the approximate solution of a class of hammerstein type integral equations system. the main structure of this method is based on the richardson iterative method for solving an algebraic linear system of equations. some conditions for existence and unique solution of this type equations are imposed. convergence analysis and error bou...

متن کامل

A New Iterative Method For Solving Fuzzy Integral ‎Equations

In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are ‎valid.‎

متن کامل

Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind

Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...

متن کامل

A New Collocation - Type Method for Hammerstein Integral Equations

We consider Hammerstein equations of the form y(i)=f(t)+(hk(t,s)g(s,y(s))ds, te[a,b], J a and present a new method for solving them numerically. The method is a collocation method applied not to the equation in its original form, but rather to an equivalent equation for z(t):= g(t,y(t)). The desired approximation to y is then obtained by use of the (exact) equation y(t)=f(t) + fh k(t,s)z(s)ds, ...

متن کامل

Convergence of the multistage variational iteration method for solving a general system of ordinary differential equations

In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.

متن کامل

a parametric iteration method for solving lane-emden type equations

in this paper, an analytical method called the parametric iteration method (pim) is presented for solving the second-order singular ivps of lane-emden type, and its local convergence is discussed. since it is often useful to have an approximate analytical solution to describe the lane-emden type equa- tions, especially for ones where the closed-form solutions do not exist at all, therefore, an ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 4

صفحات  231- 246

تاریخ انتشار 2015-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023