A new approach for building recommender system using non negative matrix factorization method

نویسندگان

چکیده مقاله:

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratings matrix in recommender systems. The user ratings matrix is factorized in a way that the users with similar interests can be identified. ‎‎‎ In this paper, we used a regularization method to minimize the difference between the main matrix and the factorized components. To this end we insert the coefficients which are defined as the norm of the decomposition factors in the factorization equation. The coefficients control the entries of the decomposition factors in a multiplication update process. Our numerical results on the MovieLens data set represent the greater accuracy of our proposed method in predicting user ratings for items. 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Non-Negative Matrix Factorization Method for Recommender Systems

Recommender systems collect various kinds of data to create their recommendations. Collaborative filtering is a common technique in this area. This technique gathers and analyzes information on users preferences, and then estimates what users will like based on their similarity to other users. However, most of current collaborative filtering approaches have faced two problems: sparsity and scal...

متن کامل

Negative Binomial Matrix Factorization for Recommender Systems

We introduce negative binomial matrix factorization (NBMF), a matrix factorization technique specially designed for analyzing over-dispersed count data. It can be viewed as an extension of Poisson matrix factorization (PF) perturbed by a multiplicative term which models exposure. This term brings a degree of freedom for controlling the dispersion, making NBMF more robust to outliers. We show th...

متن کامل

Matrix Factorization Method for Decentralized Recommender Systems

Decentralized recommender system does not rely on the central service provider, and the users can keep the ownership of their ratings. This article brings the theoretically well-studied matrix factorization method into the decentralized recommender system, where the formerly prevalent algorithms are heuristic and hence lack of theoretical guarantee. Our preliminary simulation results show that ...

متن کامل

A Method for Parallel Non-negative Sparse Large Matrix Factorization

This paper proposes parallel methods of non-negative sparse large matrix factorization. The described methods are tested and compared on large matrices processing.

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره None

صفحات  0- 0

تاریخ انتشار 2021-05

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023