A modified Mann iterative scheme for a sequence of‎ ‎nonexpansive mappings and a monotone mapping with applications

نویسندگان

  • A. Razani Department of Mathematics, Faculty of Science, I.Kh. International University,
چکیده مقاله:

‎In a real Hilbert space‎, ‎an iterative scheme is considered to‎ ‎obtain strong convergence which is an essential tool to find a‎ ‎common fixed point for a countable family of nonexpansive mappings‎ ‎and the solution of a variational inequality problem governed by a‎ ‎monotone mapping‎. ‎In this paper‎, ‎we give a procedure which results‎ ‎in developing Shehu's result to solve equilibrium problem‎. ‎Then‎, ‎we state more applications of this procedure‎. ‎Finally‎, ‎we‎ ‎investigate some numerical examples which hold in our main‎ ‎results‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a modified mann iterative scheme for a sequence of‎ ‎nonexpansive mappings and a monotone mapping with applications

‎in a real hilbert space‎, ‎an iterative scheme is considered to‎ ‎obtain strong convergence which is an essential tool to find a‎ ‎common fixed point for a countable family of nonexpansive mappings‎ ‎and the solution of a variational inequality problem governed by a‎ ‎monotone mapping‎. ‎in this paper‎, ‎we give a procedure which results‎ ‎in developing shehu's result to solve equilibrium prob...

متن کامل

Weak Convergence of Mann Iterative Algorithm for two Nonexpansive mappings

The mann fixed point algorithm play an importmant role in the approximation of fixed points of nonexpansive operators. In this paper, by considering new conditions, we prove the weak convergence of mann fixed point algorithm, for finding a common fixed point of two nonexpansive mappings in real Hilbert spaces. This results extend the privious results given by Kanzow and Shehu. Finally, we give ...

متن کامل

Mann iteration process for monotone nonexpansive mappings

*Correspondence: [email protected] 1Department of Mathematics, Faculty of Science For Girls, King Abdulaziz University, Jeddah, 21593, Saudi Arabia Full list of author information is available at the end of the article Abstract Let (X ,‖ · ‖) be a Banach space. Let C be a nonempty, bounded, closed, and convex subset of X and T : C→ C be a monotone nonexpansive mapping. In this paper, it is ...

متن کامل

A New Iterative Algorithm for Multivalued Nonexpansive Mappping and Equlibruim Problems with Applications

In this paper, we introduce two iterative schemes by a modified Krasnoselskii-Mann algorithm for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of multivalued nonexpansive mappings in Hilbert space. We prove that the sequence generated by the proposed method converges strongly to a common element of the set of solutions of equilibruim proble...

متن کامل

Iterative Process for an α- Nonexpansive Mapping and a Mapping Satisfying Condition(C) in a Convex Metric Space

We construct one-step iterative process for an α- nonexpansive mapping and a mapping satisfying condition (C) in the framework of a convex metric space. We study △-convergence and strong convergence of the iterative process to the common fixed point of the mappings. Our results are new and are valid in hyperbolic spaces, CAT(0) spaces, Banach spaces and Hilbert spaces, simultaneously.

متن کامل

Modified Iterative Algorithms for Nonexpansive Mappings

Let H be a real Hilbert space, let S, T be two nonexpansive mappings such that F S ∩ F T / ∅, let f be a contractive mapping, and let A be a strongly positive linear bounded operator on H. In this paper, we suggest and consider the strong converegence analysis of a new two-step iterative algorithms for finding the approximate solution of two nonexpansive mappings as xn 1 βnxn 1 − βn Syn, yn αnγ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 4

صفحات  823- 849

تاریخ انتشار 2014-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023