A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
نویسندگان
چکیده مقاله:
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting the optimal value of the smoothing param- eter is fuzzi ed to t the presented model. Some simulation experiments are then presented which indicate the performance of the proposed method.
منابع مشابه
a modification on ridge estimation for fuzzy nonparametric regression
this paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. this estimation method is obtained by implementing ridge regression learning algorithm in the la- grangian dual space. the distance measure for fuzzy numbers that suggested by diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملA Modification on Ridge Estimation for Fuzzy Nonparametric Regression
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the Lagrangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the crossvalidation procedure for selecting the o...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملNonparametric Ridge Estimation
We study the problem of estimating the ridges of a density function. Ridge estimation is an extension of mode finding and is useful for understanding the structure of a density. It can also be used to find hidden structure in point cloud data. We show that, under mild regularity conditions, the ridges of the kernel density estimator consistently estimate the ridges of the true density. When the...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 2
صفحات 75- 88
تاریخ انتشار 2012-06-10
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023