A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
نویسندگان
چکیده مقاله:
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model. In FLRW model, we consider the universe as the warped product of real line with a three dimensional homogeneous and isotropic manifold _ which could have positive, negative or zero curvature. The main aim of this paper is the numerical solution of the inflation evolution differential equations using of a meshless discrete Galerkin method. The method reduces the solution of these types of differential equations to the solution of Volterra integral equations of the second kind. Therefore, we solve these integral equations using moving least squares method. Finally, a numerical example is included to show the validity and efficiency of the new technique.
منابع مشابه
The Discrete Orthogonal Polynomial Least Squares Method for Approximation and Solving Partial Differential Equations
We investigate numerical approximations based on polynomials that are orthogonal with respect to a weighted discrete inner product and develop an algorithm for solving time dependent differential equations. We focus on the family of super Gaussian weight functions and derive a criterion for the choice of parameters that provides good accuracy and stability for the time evolution of partial diff...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملA New Technique for Image Zooming Based on the Moving Least Squares
In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...
متن کاملNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 2
صفحات 97- 111
تاریخ انتشار 2017-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023