A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
نویسندگان
چکیده مقاله:
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate that in comparison to several traditional and new techniques, the proposed hybrid approach achieves better classification accuracies. The compared classification approaches are C4.5, Naïve Bayes, k-NN, SVM, Ripper, PNrule and MOGF-IDS. Moreover the improvement on classification accuracy has been obtained for most of the classes of the intrusion detection classification problem. In addition, the results indicate that the proposed hybrid system's total classification accuracy is 94.33% and its classification cost is 0.1675. Therefore, the resultant fuzzy classification rules can be used to produce a reliable intrusion detection system.
منابع مشابه
A Hybridization of Evolutionary Fuzzy Systems and Ant Colony Optimization for Intrusion Detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملFeature Selection for Intrusion Detection System Using Ant Colony Optimization
Intrusion detection is a major research problem in network security. Due to the nonlinear nature of the intrusion attempts, unpredictable behavior of the network traffic and the large number of features in the problem space, intrusion detection systems represent a complicated problem area. Choosing effective and key features for intrusion detection is a very important topic in information secur...
متن کاملAnt Colony Optimization with Classification Algorithms used for Intrusion Detection
IDS which are increasingly a key part of system defense are used to identify abnormal activities in a computer system. In general, the traditional intrusion detection relies on the extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been used in ...
متن کاملEvolutionary Algorithm Ant Colony Optimization
I Which size? Trade-off I Minimum size: connectivity by recombination is achieved if at least one instance of every allele is guaranteed to be be present at each locus. Ex: if binary: P∗ 2 = (1− (0.5) ) for l = 50, it is sufficient M = 17 to guarantee P∗ 2 > 99.9%. I Often: independent, uninformed random picking from given search space. I Attempt to cover at best the search space, eg, Latin hyp...
متن کاملThe multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimization
In this paper, we illustrate a novel optimization approach based on Multi-objective Particle Swarm Optimization (MOPSO) and Fuzzy Ant Colony Optimization (FACO). The basic idea is to combine these two techniques using the best particle of the Fuzzy Ant algorithm and integrate it as the best local Particle Swarm Optimization (PSO), to formulate a new approach called hybrid MOPSO with FACO (H-MOP...
متن کاملOptimization of Combined Heat and Power Systems using a Hybrid Algorithm of Ant and Bee Colony Optimization
Abstract: In the last few years, due to the development of the new equipment in power systems, challenges have appeared in their planning and operation. One of these issues is the development of combined heat and power (CHP) units. These units have the capability to generate heat and electricity simultaneously according to their limitations. Hence, it is necessary for them to think about the ar...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 33- 46
تاریخ انتشار 2010-01-26
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023