A general construction of Reed-Solomon codes based on generalized discrete Fourier transform
نویسندگان
چکیده مقاله:
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
منابع مشابه
Counting generalized Reed-Solomon codes
In this article we count the number of [n, k] generalized Reed– Solomon (GRS) codes, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of [n, 3] MDS codes with n = 6, 7, 8, 9.
متن کاملAutomorphism groups of generalized Reed-Solomon codes
We look at AG codes associated to P, re-examining the problem of determining their automorphism groups (originally investigated by Dür in 1987 using combinatorial techniques) using recent methods from algebraic geometry. We classify those finite groups that can arise as the automorphism group of an AG code and give an explicit description of how these groups appear. We give examples of generali...
متن کاملGeneralized Reed - Solomon codes from algebraic geometry
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...
متن کاملCode Constructions based on Reed-Solomon Codes
Reed–Solomon codes are a well–studied code class which fulfill the Singleton bound with equality. However, their length is limited to the size q of the underlying field Fq. In this paper we present a code construction which yields codes with lengths of factors of the field size. Furthermore a decoding algorithm beyond half the minimum distance is given and analyzed.
متن کاملOn deep holes of generalized projective Reed-Solomon codes
Abstract. Determining deep holes is an important topic in decoding Reed-Solomon codes. Cheng and Murray, Li and Wan, Wu and Hong investigated the error distance of generalized Reed-Solomon codes. Recently, Zhang and Wan explored the deep holes of projective Reed-Solomon codes. Let l ≥ 1 be an integer and a1, . . . , al be arbitrarily given l distinct elements of the finite field Fq of q element...
متن کاملOn Determining Deep Holes of Generalized Reed-Solomon Codes
For a linear code, deep holes are defined to be vectors that are further away from codewords than all other vectors. The problem of deciding whether a received word is a deep hole for generalized ReedSolomon codes is proved to be co-NP-complete [9][5]. For the extended Reed-Solomon codes RSq(Fq, k), a conjecture was made to classify deep holes in [5]. Since then a lot of effort has been made to...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 35- 45
تاریخ انتشار 2019-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023