A COMMUTATIVITY CONDITION FOR RINGS

نویسندگان: ثبت نشده
چکیده مقاله:

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a commutativity condition for rings

in this paper, we use the structure theory to prove an analog to a well-known theorem of herstein as follows: let r be a ring with center c such that for all x,y ? r either [x,y]= 0 or x-x [x,y]? c for some non negative integer n= n(x,y) dependingon x and y. then r is commutative.

متن کامل

A commutativity-or-finiteness condition for rings

In view of this result, it was conjectured that any ring with only finitely many noncentral subrings is either finite or commutative. It is our principal goal to prove this conjecture; and in the process we provide a new proof of Theorem 1.1. For any ring R, the symbols N, D, Z , and ℘(R) will denote, respectively, the set of nilpotent elements, the set of zero divisors, the center, and the pri...

متن کامل

A condition Guaranteeing Commutativity

We give a simple characterization for a nonassociative algebra A, having characteristic 6= 2, to be commutative. Namely, A is commutative if and only if it is exible with a commuting set of generators. A counterexample shows that characteristic 6= 2 is necessary. Both the characterization and the counterexample were discovered using the computer algebra system in [2].

متن کامل

Commutativity for a Certain Class of Rings

We discuss the commutativity of certain rings with unity 1 and one-sided s-unital rings under each of the following conditions: xr[xs, y] = ±[x, yt]xn, xr[xs, y] = ±xn[x, yt], xr[xs, y] = ±[x, yt]ym, and xr[xs, y] = ±ym[x, yt], where r, n, and m are non-negative integers and t > 1, s are positive integers such that either s, t are relatively prime or s[x, y] = 0 implies [x, y] = 0. Further, we ...

متن کامل

A Combinatorial Commutativity Property for Rings

Clearly, every commutative ring is a Qn-ring for arbitrary n; moreover, there exist badly noncommutative Qn-rings, since every ring with fewer than n elements is a Qnring. Our purpose is to identify conditions which force Qn-rings to be commutative or nearly commutative. It is obvious that every Qn-ring is a Pn-ring and every Pn-ring is a P∞-ring. We make no use of the results on Pn-rings in [1...

متن کامل

A Commutativity Theorem for Associative Rings

Let m > 1; s 1 be xed positive integers, and let R be a ring with unity 1 in which for every x in R there exist integers p = p(x) 0; q = q(x) 0;n = n(x) 0; r = r(x) 0 such that either x p x n ; y]x q = x r x; y m ]y s or x p x n ;y]x q = y s x; y m ]x r for all y 2 R. In the present paper it is shown that R is commutative if it satisses the property Q(m) (i.e. for all x; y 2 R;mx; y] = 0 implie...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 3

صفحات  -

تاریخ انتشار 1993-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023