A class of J-quasipolar rings

نویسندگان

چکیده مقاله:

In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investigate general properties of weakly $J$-quasipolar rings. If $R$ is a weakly $J$-quasipolar ring, then we show that (1) $R/J(R)$ is weakly $J$-quasipolar, (2) $R/J(R)$ is commutative, (3) $R/J(R)$ is reduced. We use weakly $J$-quasipolar rings to obtain more results for $J$-quasipolar rings. We prove that the class of weakly $J$-quasipolar rings lies between the class of $J$-quasipolar rings and the class of quasipolar rings. Among others it is shown that a ring $R$ is abelian weakly $J$-quasipolar if and only if $R$ is uniquely clean.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a class of j-quasipolar rings

in this paper, we introduce a class of $j$-quasipolar rings. let $r$ be a ring with identity. an element $a$ of a ring $r$ is called {it weakly $j$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $j(r)$ and the ring $r$ is called {it weakly $j$-quasipolar} if every element of $r$ is weakly $j$-quasipolar. we give many characterizations and investiga...

متن کامل

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

a class of artinian local rings of homogeneous type

‎let $i$ be an ideal in a regular local ring $(r,n)$‎, ‎we will find‎ ‎bounds on the first and the last betti numbers of‎ ‎$(a,m)=(r/i,n/i)$‎. ‎if $a$ is an artinian ring of the embedding‎ ‎codimension $h$‎, ‎$i$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $a$ a {it $t-$extended stretched local ring}‎. ‎this class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

Generalized J-Rings and Commutativity

A J-ring is a ring R with the property that for every x in R there exists an integer n(x)>1 such that x x x n = ) ( , and a well-known theorem of Jacobson states that a Jring is necessarily commutative. With this as motivation, we define a generalized Jring to be a ring R with the property that for all x, y in R0 there exists integers 1 ) ( , 1 ) ( > = > = y m m x n n such that m n xy y x − is ...

متن کامل

On a Class of Lattice-ordered Rings

for some real number X, the symbol V denoting the lattice least upper bound. Any ring R is regular [10] if for each xER there is an xaER such that xx°x = x. It is evident that every regular F-ring R contains a maximal bounded sub-F-ring R, the F-ring of all xER satisfying equation (1.1). The relationship between a regular F-ring and its maximal bounded sub-F-ring is analogous to that between th...

متن کامل

Commutativity for a Certain Class of Rings

We discuss the commutativity of certain rings with unity 1 and one-sided s-unital rings under each of the following conditions: xr[xs, y] = ±[x, yt]xn, xr[xs, y] = ±xn[x, yt], xr[xs, y] = ±[x, yt]ym, and xr[xs, y] = ±ym[x, yt], where r, n, and m are non-negative integers and t > 1, s are positive integers such that either s, t are relatively prime or s[x, y] = 0 implies [x, y] = 0. Further, we ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 2

صفحات  1- 15

تاریخ انتشار 2015-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023